×

zbMATH — the first resource for mathematics

Dynamics of vorticity defects in stratified shear flow. (English) Zbl 1250.76065
Summary: We consider the linear stability and nonlinear evolution of two-dimensional shear flows that take the form of an unstratified plane Couette flow that is seeded with a localized ‘defect’ containing sharp density and vorticity variations. For such flows, matched asymptotic expansions furnish a reduced model that allows a straightforward and computationally efficient exploration of flows at sufficiently high Reynolds and PĂ©clet numbers that sharp density and vorticity gradients persist throughout the onset, growth and saturation of instability. We are thereby able to study the linear and nonlinear dynamics of three canonical variants of stratified shear instability: Kelvin-Helmholtz instability, the Holmboe instability, and the lesser-considered Taylor instability, all of which are often interpreted in terms of the interactions of waves riding on sharp interfaces of density and vorticity. The dynamics near onset is catalogued; if the interfaces are sufficiently sharp, the onset of instability is subcritical, with a nonlinear state existing below the linear instability threshold. Beyond onset, both Holmboe and Taylor instabilities are susceptible to inherently two-dimensional secondary instabilities that lead to wave mergers and wavelength coarsening. Additional two-dimensional secondary instabilities are also found to appear for higher Prandtl numbers that take the form of parasitic Holmboe-like waves.

MSC:
76E05 Parallel shear flows in hydrodynamic stability
76D50 Stratification effects in viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112094003320 · Zbl 0858.76029 · doi:10.1017/S0022112094003320
[2] Holmboe, Geophys. Publ. 24 pp 67– (1962)
[3] DOI: 10.1017/S0022112002003397 · Zbl 1063.76506 · doi:10.1017/S0022112002003397
[4] DOI: 10.1063/1.3379845 · Zbl 1190.76020 · doi:10.1063/1.3379845
[5] DOI: 10.1017/S0022112065000290 · Zbl 0125.17903 · doi:10.1017/S0022112065000290
[6] DOI: 10.1080/03091927808242627 · Zbl 0404.76025 · doi:10.1080/03091927808242627
[7] Fujiwara, Publ. Astron. Soc. Japan 33 pp 531– (1981)
[8] DOI: 10.1017/S0022112076001365 · Zbl 0317.76024 · doi:10.1017/S0022112076001365
[9] DOI: 10.1017/S002211200000286X · Zbl 0963.76505 · doi:10.1017/S002211200000286X
[10] DOI: 10.1017/S0022112096004119 · Zbl 0896.76020 · doi:10.1017/S0022112096004119
[11] DOI: 10.1063/1.3609283 · Zbl 06422721 · doi:10.1063/1.3609283
[12] DOI: 10.1029/CE054p0389 · doi:10.1029/CE054p0389
[13] DOI: 10.1017/S0022112097008124 · Zbl 0906.76016 · doi:10.1017/S0022112097008124
[14] DOI: 10.1017/S0022112096007082 · Zbl 0877.76027 · doi:10.1017/S0022112096007082
[15] DOI: 10.1017/S0022112074001121 · doi:10.1017/S0022112074001121
[16] DOI: 10.1017/S0022112094002582 · Zbl 0889.76019 · doi:10.1017/S0022112094002582
[17] DOI: 10.1017/S0022112087001708 · Zbl 0635.76042 · doi:10.1017/S0022112087001708
[18] DOI: 10.1017/S0022112071000557 · doi:10.1017/S0022112071000557
[19] DOI: 10.1063/1.2001567 · Zbl 1187.76016 · doi:10.1063/1.2001567
[20] DOI: 10.1016/0021-9991(76)90053-X · doi:10.1016/0021-9991(76)90053-X
[21] DOI: 10.1017/S0022112009007733 · Zbl 1183.76053 · doi:10.1017/S0022112009007733
[22] DOI: 10.1063/1.868679 · doi:10.1063/1.868679
[23] DOI: 10.1098/rspa.1931.0115 · Zbl 0002.42002 · doi:10.1098/rspa.1931.0115
[24] DOI: 10.1017/S0022112000008284 · Zbl 0982.76050 · doi:10.1017/S0022112000008284
[25] Sutherland, Internal Gravity Waves (2010) · Zbl 1217.83001 · doi:10.1017/CBO9780511780318
[26] DOI: 10.1016/S0169-5983(00)00020-4 · doi:10.1016/S0169-5983(00)00020-4
[27] DOI: 10.1017/S0022112095002072 · Zbl 0867.76026 · doi:10.1017/S0022112095002072
[28] DOI: 10.1175/1520-0485(2003)33&lt;694:TAMIHW&gt;2.0.CO;2 · doi:10.1175/1520-0485(2003)33<694:TAMIHW>2.0.CO;2
[29] DOI: 10.1063/1.870385 · Zbl 1149.76542 · doi:10.1063/1.870385
[30] DOI: 10.1080/03091928808213625 · Zbl 0661.76033 · doi:10.1080/03091928808213625
[31] DOI: 10.1017/S0022112097005806 · Zbl 0919.76032 · doi:10.1017/S0022112097005806
[32] Sellwood, Mon. Not. R. Astron. Soc. 250 pp 278– (1991) · doi:10.1093/mnras/250.2.278
[33] DOI: 10.1146/annurev.fl.26.010194.001351 · doi:10.1146/annurev.fl.26.010194.001351
[34] DOI: 10.1146/annurev.fluid.35.101101.161144 · Zbl 1041.76024 · doi:10.1146/annurev.fluid.35.101101.161144
[35] DOI: 10.1063/1.1693587 · doi:10.1063/1.1693587
[36] Nicholson, Introduction to Plasma Theory (1983)
[37] DOI: 10.1063/1.3651269 · Zbl 06423232 · doi:10.1063/1.3651269
[38] DOI: 10.1029/2011GL048542 · doi:10.1029/2011GL048542
[39] DOI: 10.1086/308693 · doi:10.1086/308693
[40] DOI: 10.1080/03091927908243758 · doi:10.1080/03091927908243758
[41] Lin, Math. Res. Lett. 8 pp 1– (2001) · Zbl 0993.35084 · doi:10.4310/MRL.2001.v8.n4.a11
[42] DOI: 10.1016/S0377-0265(01)00063-X · doi:10.1016/S0377-0265(01)00063-X
[43] DOI: 10.1017/S0022112089001229 · Zbl 0666.76063 · doi:10.1017/S0022112089001229
[44] DOI: 10.1146/annurev.fluid.39.050905.110314 · Zbl 1136.76026 · doi:10.1146/annurev.fluid.39.050905.110314
[45] DOI: 10.1017/S002211200999317X · Zbl 1189.76238 · doi:10.1017/S002211200999317X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.