# zbMATH — the first resource for mathematics

Generalized two-dimensional lagally theorem with free vortices and its application to fluid-body interaction problems. (English) Zbl 1250.76029
Summary: The Lagally theorem describes the unsteady hydrodynamic force on a rigid body exhibiting arbitrary motion in an inviscid and incompressible fluid by the properties of the singularities employed to generate the flow and the body motion and to meet the boundary condition. So far, only sources and dipoles have been considered, and the present work extends the theorem to include free vortices in a two-dimensional flow. The present extension is validated by reproducing the system dynamics or the force evolution of three literature problems: (i) a free cylinder interacting with a free vortex; (ii) the moving Föppl problem; and (iii) a cylinder in constant normal approach to a fixed identical cylinder. This work further extends the bifurcation analysis on the moving Föppl problem by including the solid-to-liquid density ratio as a new parameter, in addition to the system total impulse and the vortex strength. We then apply the theorem to the problem where a moving Föppl system is made to approach a fixed or a free neutrally buoyant target cylinder of identical size from far away. The force developed on each cylinder is examined with respect to the vortex pair configuration and the target mobility. When approaching a fixed target, a greater force is developed if the vortex pair has stronger circulation and larger structure. The mobility of the target cylinder, however, can modify the hydrodynamic force by reducing its magnitude and reversing the force ordering with respect to the vortex pair configuration found for the case with fixed target. Possible mechanisms for such a change of force nature are given based on the currently derived equation of motion.

##### MSC:
 76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing 76B47 Vortex flows for incompressible inviscid fluids
Full Text:
##### References:
 [1] Saffman, Vortex Dynamics (1992) [2] Sedov, Two-Dimensional Problems in Hydrodynamics and Aerodynamics (1965) · Zbl 0131.40901 [3] Marshall, Inviscid Incompressible Flow (2001) [4] DOI: 10.1017/S0022112056000184 · Zbl 0073.41902 · doi:10.1017/S0022112056000184 [5] DOI: 10.1017/S0022112080002005 · Zbl 0431.76012 · doi:10.1017/S0022112080002005 [6] Landweber, J. Ship Res. 33 pp 1– (1989) [7] DOI: 10.1063/1.1900583 · Zbl 1187.76108 · doi:10.1063/1.1900583 [8] Landweber, Q. Appl. Maths 14 pp 51– (1956) · Zbl 0071.40302 · doi:10.1090/qam/79441 [9] DOI: 10.1098/rspa.2005.1492 · Zbl 1186.76630 · doi:10.1098/rspa.2005.1492 [10] Lamb, Hydrodynamics (1932) [11] DOI: 10.1007/s00162-009-0098-5 · Zbl 1191.76020 · doi:10.1007/s00162-009-0098-5 [12] DOI: 10.1002/zamm.19220020601 · JFM 48.0949.02 · doi:10.1002/zamm.19220020601 [13] DOI: 10.1017/S0022112008000359 · Zbl 1151.76493 · doi:10.1017/S0022112008000359 [14] DOI: 10.1007/s10665-008-9222-6 · Zbl 1160.76005 · doi:10.1007/s10665-008-9222-6 [15] Föppl, Sitz. K. Bäyr. Akad. Wiss. 1 pp 7– (1913) [16] DOI: 10.1070/RD2003v008n04ABEH000257 · Zbl 1051.76009 · doi:10.1070/RD2003v008n04ABEH000257 [17] DOI: 10.1017/S0022112007007161 · Zbl 1144.76004 · doi:10.1017/S0022112007007161 [18] Birkhoff, Hydrodynamics (1950) [19] DOI: 10.1007/BF00055042 · Zbl 0555.76025 · doi:10.1007/BF00055042 [20] DOI: 10.1017/S0022112008003856 · Zbl 1155.76011 · doi:10.1017/S0022112008003856 [21] DOI: 10.1063/1.3518764 · Zbl 06421233 · doi:10.1063/1.3518764 [22] DOI: 10.1063/1.1804536 · Zbl 1187.76550 · doi:10.1063/1.1804536 [23] DOI: 10.1063/1.3485063 · Zbl 06421137 · doi:10.1063/1.3485063 [24] DOI: 10.1098/rspa.1928.0131 · JFM 54.0918.02 · doi:10.1098/rspa.1928.0131 [25] DOI: 10.1063/1.1445183 · Zbl 1185.76481 · doi:10.1063/1.1445183 [26] DOI: 10.1063/1.2400209 · Zbl 1146.76534 · doi:10.1063/1.2400209 [27] Milne-Thompson, Theoretical Hydrodynamics (1968) · doi:10.1007/978-1-349-00517-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.