×

zbMATH — the first resource for mathematics

On free quotients of complete intersection Calabi-Yau manifolds. (English) Zbl 1250.14026
Summary: In order to find novel examples of non-simply connected Calabi-Yau threefolds, free quotients of complete intersections in products of projective spaces are classified by means of a computer search. More precisely, all automorphisms of the product of projective spaces that descend to a free action on the Calabi-Yau manifold are identified.

MSC:
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14J33 Mirror symmetry (algebro-geometric aspects)
14M10 Complete intersections
14L30 Group actions on varieties or schemes (quotients)
Software:
GAP; PALP; singular; SINGULAR
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Kreuzer, M.; Skarke, H., Complete classification of reflexive polyhedra in four dimensions, Adv. Theor. Math. Phys., 4, 1209, (2002)
[2] Kreuzer, M.; Skarke, H., PALP: A package for analyzing lattice polytopes with applications to toric geometry, Comput. Phys. Commun., 157, 87, (2004)
[3] V. Batyrev and M. Kreuzer, Integral Cohomology and Mirror Symmetry for Calabi-Yau 3-folds, math.AG/0505432.
[4] Yau, S-T, Compact three-dimensional Kähler manifolds with zero Ricci curvature, 395-406, (1985), Singapore
[5] Tian, G.; Yau, S-T, Three-dimensional algebraic manifolds with \(C\)_{1} = 0 and \(χ\) = − 6, 543-559, (1987), Singapore
[6] Greene, BR; Kirklin, KH; Miron, PJ; Ross, GG, A three generation superstring model. 2. symmetry breaking and the low-energy theory, Nucl. Phys., B 292, 606, (1987)
[7] Greene, BR; Kirklin, KH; Miron, PJ; Ross, GG, A three generation superstring model. 1. compactification and discrete symmetries, Nucl. Phys., B 278, 667, (1986)
[8] Candelas, P.; Dale, AM; Lütken, CA; Schimmrigk, R., Complete intersection Calabi-Yau manifolds, Nucl. Phys., B 298, 493, (1988)
[9] Candelas, P.; Lütken, CA; Schimmrigk, R., Complete intersection Calabi-Yau manifolds. 2. three generation manifolds, Nucl. Phys., B 306, 113, (1988)
[10] M. Gross and S. Popescu, Calabi-Yau Threefolds and Moduli of Abelian Surfaces I, math/0001089.
[11] B. Szendroi, On a conjecture of Cox and Katz, math/0110166 [SPIRES].
[12] Candelas, P.; Davies, R., New Calabi-Yau manifolds with small Hodge numbers, Fortsch. Phys., 58, 383, (2010)
[13] Braun, V.; Candelas, P.; Davies, R., A three-generation Calabi-Yau manifold with small Hodge numbers, Fortsch. Phys., 58, 467, (2010)
[14] Bobkov, K.; Braun, V.; Kumar, P.; Raby, S., Stabilizing all Kähler moduli in type IIB orientifolds, JHEP, 12, 056, (2010)
[15] Anderson, LB; He, Y-H; Lukas, A., Monad bundles in heterotic string compactifications, JHEP, 07, 104, (2008)
[16] Braun, V., Three generations on the quintic quotient, JHEP, 01, 094, (2010)
[17] He, Y-H; Lee, S-J; Lukas, A., Heterotic models from vector bundles on toric Calabi-Yau manifolds, JHEP, 05, 071, (2010)
[18] Anderson, LB; Gray, J.; He, Y-H; Lukas, A., Exploring positive monad bundles and A new heterotic standard model, JHEP, 02, 054, (2010)
[19] G.-M. Greuel, G. Pfister and H. Schönemann, Singular 3.0, a computer algebra system for polynomial computations, Centre for Computer Algebra, University of Kaiserslautern (2005), http://www.singular.uni-kl.de.
[20] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12 (2008), http://www.gap-system.org.
[21] M. Costantini and W. de Graaf, The GA P interface to Singular, a gap package, Dipartimento di Matematica, Università degli Studi di Trento (2006), http://www.gap-system.org/Packages/singular.html.
[22] Schur, I., Über die darstellung der endlichen gruppen durch gebrochene lineare substitutionen, J. Reine Angew. Math., 127, 20, (1904)
[23] Schur, I., Untersuchungen über die darstellung der endlichen gruppen durch gebrochene lineare substitutionen, J. Reine Angew. Math., 132, 85, (1907)
[24] Atiyah, MF; Bott, R., A Lefschetz fixed point formula for elliptic differential operators, Bull. Am. Math. Soc., 72, 245, (1966)
[25] Atiyah, MF; Segal, GB, The index of elliptic operators. II, Ann. Math., 87, 531, (1968)
[26] Braun, V.; Ovrut, BA; Pantev, T.; Reinbacher, R., Elliptic Calabi-Yau threefolds with Z(3) × Z(3) Wilson lines, JHEP, 12, 062, (2004)
[27] Braun, V.; Kreuzer, M.; Ovrut, BA; Scheidegger, E., Worldsheet instantons, torsion curves and non-perturbative superpotentials, Phys. Lett., B 649, 334, (2007)
[28] Braun, V.; Kreuzer, M.; Ovrut, BA; Scheidegger, E., Worldsheet instantons and torsion curves part A: direct computation, JHEP, 10, 022, (2007)
[29] Braun, V.; Kreuzer, M.; Ovrut, BA; Scheidegger, E., Worldsheet instantons and torsion curves, part B: mirror symmetry, JHEP, 10, 023, (2007)
[30] Candelas, P.; Ossa, X.; He, Y-H; Szendroi, B., Triadophilia: A special corner in the landscape, Adv. Theor. Math. Phys., 12, 2, (2008)
[31] Z. Hua, Classification of free actions on complete intersections of four quadrics, arXiv:0707.4339 [SPIRES].
[32] Beauville, A., A Calabi-Yau threefold with non-abelian fundamental group, No. 264, (1999), Cambridge U.K
[33] L. Borisov and Z. Hua, On Calabi-Yau threefolds with large nonabelian fundamental groups, math/0609728.
[34] Naie, D., Numerical Campedelli surfaces cannot have the symmetric group as the algebraic fundamental group, J. London Math. Soc., 59, 813, (1999)
[35] M.M. Lopes, R. Pardini and M. Reid, Campedelli surfaces with fundamental group of order 8, arXiv:0805.0006 [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.