zbMATH — the first resource for mathematics

Compact embeddings of Besov spaces involving only slowly varying smoothness. (English) Zbl 1249.46026
Summary: We characterize compact embeddings of Besov spaces \(B^{0,b}_{p,r}(\mathbb {R}^n)\) involving the zero classical smoothness and a slowly varying smoothness \(b\) into Lorentz-Karamata spaces \(L_{p,q;\bar {b}}(\Omega )\), where \(\Omega \) is a bounded domain in \(\mathbb {R}^n\) and \(\bar {b}\) is another slowly varying function.

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI EuDML
[1] C. Bennett, R. Sharpley: Interpolation of Operators. Academic Press, Boston, 1988.
[2] A. M. Caetano, W. Farkas: Local growth envelopes of Besov spaces of generalized smoothness. Z. Anal. Anwendungen 25 (2006), 265–298. · Zbl 1119.46032
[3] A. M. Caetano, A. Gogatishvili, B. Opic: Sharp embeddings of Besov spaces involving only logarithmic smoothness. J. Approx. Theory 152 (2008), 188–214. · Zbl 1161.46017 · doi:10.1016/j.jat.2007.12.003
[4] A. M. Caetano, A. Gogatishvili, B. Opic: Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness. J. Approx. Theory 163 (2011), 1373–1399. · Zbl 1238.46024 · doi:10.1016/j.jat.2011.03.005
[5] A. M. Caetano, D. D. Haroske: Continuity envelopes of spaces of generalised smoothness: a limiting case; embeddings and approximation numbers. J. Function Spaces Appl. 3 (2005), 33–71. · Zbl 1079.46019 · doi:10.1155/2005/165785
[6] A. M. Caetano, S. D. Moura: Local growth envelopes of spaces of generalized smoothness: the sub-critical case. Math. Nachr. 273 (2004), 43–57. · Zbl 1070.46020 · doi:10.1002/mana.200310195
[7] A. M. Caetano, S. D. Moura: Local growth envelopes of spaces of generalized smoothness: the critical case. Math. Ineq. & Appl. 7 (2004), 573–606. · Zbl 1076.46025
[8] M. J. Carro, J. A. Raposo, J. Soria: Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Amer. Math. Soc. 187 (2007). · Zbl 1126.42005
[9] M. J. Carro, J. Soria: Weighted Lorentz spaces and the Hardy operator. J. Funct. Anal. 112 (1993), 480–494. · Zbl 0784.46022 · doi:10.1006/jfan.1993.1042
[10] N. Dunford, J. T. Schwartz: Linear Operators, part I. Interscience, New York, 1957.
[11] D. E. Edmunds, W. D. Evans: Hardy Operators, Functions Spaces and Embeddings. Springer, Berlin, Heidelberg, 2004.
[12] D. E. Edmunds, P. Gurka, B. Opic: Compact and continuous embeddings of logarithmic Bessel potential spaces. Studia Math. 168 (2005), 229–250. · Zbl 1083.46017 · doi:10.4064/sm168-3-4
[13] D. E. Edmunds, R. Kerman, L. Pick: Optimal Sobolev imbeddings involving rearrangementinvariant quasinorms. J. Funct. Anal. 170 (2000), 307–355. · Zbl 0955.46019 · doi:10.1006/jfan.1999.3508
[14] W. Farkas, H.-G. Leopold: Characterisations of function spaces of generalised smoothness. Ann. Mat. Pura Appl. 185 (2006), 1–62. · Zbl 1116.46024 · doi:10.1007/s10231-004-0110-z
[15] M. L. Gol’dman: Embeddings of Nikol’skij-Besov spaces into weighted Lorent spaces. Trudy Mat. Inst. Steklova 180 (1987), 93–95. (In Russian.)
[16] M. L. Gol’dman: Rearrangement invariant envelopes of generalized Besov, Sobolev, and Calderon spaces. Burenkov, V. I. (ed.) et al., The interaction of analysis and geometry. International school-conference on analysis and geometry, Novosibirsk, Russia, August 23–September 3, 2004. Providence, RI: American Mathematical Society (AMS). Contemporary Mathematics 424 (2007), 53–81.
[17] M. L. Gol’dman, R. Kerman: On optimal embedding of Calderón spaces and generalized Besov spaces. Tr. Mat. Inst. Steklova 243 (2003), 161–193 (In Russian.); English translation: Proc. Steklov Inst. Math. 243 (2003), 154–184.
[18] P. Gurka, B. Opic: Sharp embeddings of Besov spaces with logarithmic smoothness. Rev. Mat. Complutense 18 (2005), 81–110. · Zbl 1083.46018
[19] P. Gurka, B. Opic: Sharp embeddings of Besov-type spaces. J. Comput. Appl. Math. 208 (2007), 235–269. · Zbl 1132.46022 · doi:10.1016/j.cam.2006.10.036
[20] D. D. Haroske, S. D. Moura: Continuity envelopes of spaces of generalized smoothness, entropy and approximation numbers. J. Approximation Theory 128 (2004), 151–174. · Zbl 1055.46020 · doi:10.1016/j.jat.2004.04.008
[21] G. A. Kalyabin, P. I. Lizorkin: Spaces of functions of generalized smoothness. Math. Nachr. 133 (1987), 7–32. · Zbl 0636.46033 · doi:10.1002/mana.19871330102
[22] Yu. Netrusov: Imbedding theorems of Besov spaces in Banach lattices. J. Soviet. Math. 47 (1989), 2871–2881; Translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklova (LOMI) 159 (1987), 69–82. · Zbl 0686.46029 · doi:10.1007/BF01305216
[23] H. Triebel: Theory of Function Spaces II. Birkhäuser, Basel, 1992. · Zbl 0763.46025
[24] H. Triebel: Theory of Function Spaces III. Birkhäuser, Basel, 2006. · Zbl 1104.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.