zbMATH — the first resource for mathematics

Anomaly cancellation and conformality in quiver gauge theories. (English) Zbl 1248.81210
Summary: Abelian quiver gauge theories provide non-supersymmetric candidates for the conformality approach to physics beyond the standard model. Written as \({\mathcal N}=0\), \(\mathrm{U}(N)^n\) gauge theories, however, they have mixed \(\mathrm{U}(1)_p\mathrm{U}(1)^2_q\) and \(\mathrm{U}(1)_p\mathrm{SU}(N)^2_q\) triangle anomalies. It is shown how to construct explicitly a compensatory term \(\Delta{\mathcal L}_{\mathrm{comp}}\) which restores gauge invariance of \({\mathcal L}_{\mathrm{eff}}={\mathcal L}+\Delta{\mathcal L}_{\mathrm{comp}}\) under \(\mathrm{U}(N)^n\). It can lead to a negative contribution to the \(\mathrm{U}(1)\) \(\beta\)-function and hence to one-loop conformality at high energy for all dimensionless couplings.

81T50 Anomalies in quantum field theory
81T13 Yang-Mills and other gauge theories in quantum field theory
81T17 Renormalization group methods applied to problems in quantum field theory
Full Text: DOI arXiv
[1] Frampton, P.H., Phys. rev. D, 60, 041901, (1999), see also
[2] Frampton, P.H.; Frampton, P.H., Phys. rev. D, Phys. rev. D, 60, 121901, (1999)
[3] Frampton, P.H., Mod. phys. lett. A, 18, 1377, (2003), see also [11]
[4] Maldacena, J., Adv. theor. math. phys., 2, 231, (1998)
[5] Witten, E.; Gubser, S.S.; Klebanov, I.R.; Polyakov, A.M., Adv. theor. math. phys., Phys. lett. B, 428, 105, (1998)
[6] Calmet, X.; Frampton, P.H.; Rohm, R.M., Phys. rev. D, 72, 055003, (2005)
[7] Frampton, P.H.; Vafa, C.
[8] Douglas, M.R.; Moore, G.; Ibanez, L.E.; Rabadan, R.; Uranga, A.M., Nucl. phys. B, 542, 112, (1999)
[9] Dudas, E.; Falkowski, A.; Pokorski, S., Phys. lett. B, 568, 281, (2003)
[10] Aldazabal, G.; Ibanez, L.E.; Quevedo, F.; Uranga, A.M., Jhep, 0008, 002, (2000)
[11] Frampton, P.H.; Rohm, R.M.; Takahashi, T., Phys. lett. B, 567, 265, (2003)
[12] Frampton, P.H., Gauge field theories, (2000), Wiley · Zbl 1059.81122
[13] Frampton, P.H.
[14] Frampton, P.H.; Shively, W.F., Phys. lett. B, 454, 49, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.