×

zbMATH — the first resource for mathematics

Flow topology in compressible turbulent boundary layer. (English) Zbl 1248.76085
Summary: The flow topologies of compressible turbulent boundary layers at Mach 2 are investigated by means of direct numerical simulation (DNS) of the compressible Navier-Stokes equations, and statistical analysis of the invariants of the velocity gradient tensor. We identify a preference for an unstable focus/compressing topology in the inner layer and an unstable node/saddle/saddle (UN/S/S) topology in the outer layer. The dissipation and dissipation production originate mainly from this UN/S/S topology. The enstrophy depends mainly on an unstable focus/stretching (UFS) topology, and the enstrophy production relies on a UN/S/S topology in the inner layer and on a UFS topology in the outer layer. The compressibility effect on the statistical properties of the topologies is investigated in terms of the ‘incompressible’, compressed and expanding regions. It is found that the locally compressed region tends to be more stable and the locally expanding region tends to be more dissipative. The compressibility is mainly related to unstable focus/compressing and stable focus/stretching topologies. Moreover, the features of the average dissipation, enstrophy, dissipation production and enstrophy production of the various topologies are clarified in the locally compressed and expanding regions.

MSC:
76F40 Turbulent boundary layers
76F50 Compressibility effects in turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1146/annurev.fl.26.010194.001443 · doi:10.1146/annurev.fl.26.010194.001443
[2] DOI: 10.1063/1.868323 · Zbl 0827.76031 · doi:10.1063/1.868323
[3] DOI: 10.1007/BF00849111 · Zbl 0823.76039 · doi:10.1007/BF00849111
[4] Smits, Turbulent Shear Layers in Supersonic Flow (2006)
[5] Smith, Exp. Fluids 18 pp 288– (1995)
[6] DOI: 10.1063/1.2912513 · Zbl 1182.76172 · doi:10.1063/1.2912513
[7] DOI: 10.1016/0021-9991(88)90177-5 · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[8] DOI: 10.1016/S0142-727X(03)00052-3 · doi:10.1016/S0142-727X(03)00052-3
[9] DOI: 10.1017/S0022112007009020 · Zbl 1159.76342 · doi:10.1017/S0022112007009020
[10] DOI: 10.1063/1.1637604 · Zbl 1186.76423 · doi:10.1063/1.1637604
[11] DOI: 10.1103/PhysRevLett.95.164502 · doi:10.1103/PhysRevLett.95.164502
[12] DOI: 10.1103/PhysRevE.79.016305 · doi:10.1103/PhysRevE.79.016305
[13] Li, Direct and Large-Eddy Simulation V pp 387– (2003)
[14] DOI: 10.1080/14685240902767016 · doi:10.1080/14685240902767016
[15] Klewicki, Self-Sustaining Mechanisms of Wall Turbulence pp 135– (1997)
[16] DOI: 10.1007/BF01063424 · Zbl 0712.76052 · doi:10.1007/BF01063424
[17] Khashehchi, Laser Techniques Applied to Fluid Mechanics, 15th International Symposium (2010)
[18] DOI: 10.1006/jcph.1996.0130 · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[19] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[20] Hunt, Rep. CTR-S88, Center for Turbulence Research (1988)
[21] Gulitski, J. Fluid Mech. 589 pp 57– (2007)
[22] DOI: 10.1017/S0022112000008466 · Zbl 0983.76039 · doi:10.1017/S0022112000008466
[23] DOI: 10.1063/1.3453709 · Zbl 1190.76046 · doi:10.1063/1.3453709
[24] DOI: 10.1017/S0022112006004204 · Zbl 1108.76311 · doi:10.1017/S0022112006004204
[25] DOI: 10.1017/S0022112090003330 · doi:10.1017/S0022112090003330
[26] DOI: 10.1017/S0022112006009244 · Zbl 1093.76510 · doi:10.1017/S0022112006009244
[27] DOI: 10.1063/1.1320830 · Zbl 1184.76170 · doi:10.1063/1.1320830
[28] DOI: 10.1017/S0022112010003381 · Zbl 1205.76123 · doi:10.1017/S0022112010003381
[29] DOI: 10.1063/1.3291070 · Zbl 1183.76191 · doi:10.1063/1.3291070
[30] DOI: 10.1017/S0022112009992047 · Zbl 1189.76023 · doi:10.1017/S0022112009992047
[31] Eléna, J. Méc. Théor. Appl. 7 pp 175– (1988)
[32] DOI: 10.1017/S0022112010005902 · Zbl 1225.76160 · doi:10.1017/S0022112010005902
[33] DOI: 10.1063/1.870369 · Zbl 1149.76359 · doi:10.1063/1.870369
[34] DOI: 10.1063/1.1804553 · Zbl 1187.76418 · doi:10.1063/1.1804553
[35] DOI: 10.1017/S0022112009993156 · Zbl 1189.76290 · doi:10.1017/S0022112009993156
[36] DOI: 10.1017/S0022112010001710 · Zbl 1197.76079 · doi:10.1017/S0022112010001710
[37] DOI: 10.1017/S0022112008003005 · Zbl 1151.76513 · doi:10.1017/S0022112008003005
[38] DOI: 10.1007/BF00849110 · Zbl 0822.76047 · doi:10.1007/BF00849110
[39] DOI: 10.1146/annurev.fl.19.010187.001013 · doi:10.1146/annurev.fl.19.010187.001013
[40] DOI: 10.1017/S0022112098003681 · Zbl 0965.76031 · doi:10.1017/S0022112098003681
[41] DOI: 10.1017/S0022112098003024 · Zbl 0933.76035 · doi:10.1017/S0022112098003024
[42] DOI: 10.1063/1.870340 · Zbl 1149.76495 · doi:10.1063/1.870340
[43] DOI: 10.1146/annurev-fluid-122109-160708 · Zbl 1299.76088 · doi:10.1146/annurev-fluid-122109-160708
[44] DOI: 10.1299/jsmeb.42.336 · doi:10.1299/jsmeb.42.336
[45] DOI: 10.1017/S0022112009991947 · Zbl 1183.76787 · doi:10.1017/S0022112009991947
[46] DOI: 10.1017/S002211200600005X · Zbl 1156.76404 · doi:10.1017/S002211200600005X
[47] DOI: 10.1017/S0022112097008057 · Zbl 0908.76039 · doi:10.1017/S0022112097008057
[48] DOI: 10.1063/1.857730 · doi:10.1063/1.857730
[49] DOI: 10.1063/1.3005832 · Zbl 1182.76149 · doi:10.1063/1.3005832
[50] DOI: 10.1063/1.858295 · Zbl 0754.76004 · doi:10.1063/1.858295
[51] DOI: 10.1063/1.870101 · Zbl 1147.76360 · doi:10.1063/1.870101
[52] DOI: 10.1017/S0022112009993892 · Zbl 1189.76016 · doi:10.1017/S0022112009993892
[53] DOI: 10.1016/S0894-1777(96)00090-8 · doi:10.1016/S0894-1777(96)00090-8
[54] DOI: 10.1063/1.1472506 · Zbl 1185.76376 · doi:10.1063/1.1472506
[55] DOI: 10.1017/S002211209900720X · Zbl 0985.76038 · doi:10.1017/S002211209900720X
[56] DOI: 10.1017/S0022112096001802 · Zbl 0864.76036 · doi:10.1017/S0022112096001802
[57] DOI: 10.1017/S0022112010006427 · Zbl 1241.76289 · doi:10.1017/S0022112010006427
[58] DOI: 10.1017/S0022112010000169 · Zbl 1193.76069 · doi:10.1017/S0022112010000169
[59] White, Viscous Fluid Flow (1974) · Zbl 0356.76003
[60] DOI: 10.1017/S002211200800476X · Zbl 1156.76406 · doi:10.1017/S002211200800476X
[61] DOI: 10.1088/0256-307X/28/3/034703 · doi:10.1088/0256-307X/28/3/034703
[62] DOI: 10.1017/S0022112001004475 · Zbl 1062.76500 · doi:10.1017/S0022112001004475
[63] DOI: 10.1080/14685240500307389 · Zbl 1273.76223 · doi:10.1080/14685240500307389
[64] DOI: 10.1007/s001620050102 · Zbl 0931.76033 · doi:10.1007/s001620050102
[65] DOI: 10.1063/1.3046290 · Zbl 1183.76555 · doi:10.1063/1.3046290
[66] DOI: 10.1017/S0022112008005569 · Zbl 1171.76390 · doi:10.1017/S0022112008005569
[67] DOI: 10.1016/S0169-5983(97)00022-1 · Zbl 1051.76585 · doi:10.1016/S0169-5983(97)00022-1
[68] DOI: 10.1063/1.870091 · Zbl 1147.76522 · doi:10.1063/1.870091
[69] DOI: 10.1007/978-90-481-3174-7 · Zbl 1177.76001 · doi:10.1007/978-90-481-3174-7
[70] Tsinober, Turbulence Structure and Vortex Dynamics pp 164– (2000)
[71] DOI: 10.1016/S0997-7546(98)80003-4 · Zbl 0932.76029 · doi:10.1016/S0997-7546(98)80003-4
[72] DOI: 10.1098/rspa.1938.0002 · JFM 64.1453.04 · doi:10.1098/rspa.1938.0002
[73] DOI: 10.1080/14685241003604751 · doi:10.1080/14685241003604751
[74] DOI: 10.1017/S0022112008004631 · Zbl 1156.76435 · doi:10.1017/S0022112008004631
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.