×

zbMATH — the first resource for mathematics

A physics-based approach to flow control using system identification. (English) Zbl 1248.76052
Summary: Control of amplifier flows poses a great challenge, since the influence of environmental noise sources and measurement contamination is a crucial component in the design of models and the subsequent performance of the controller. A model-based approach that makes a priori assumptions on the noise characteristics often yields unsatisfactory results when the true noise environment is different from the assumed one. An alternative approach is proposed that consists of a data-based system-identification technique for modelling the flow; it avoids the model-based shortcomings by directly incorporating noise influences into an auto-regressive (ARMAX) design. This technique is applied to flow over a backward-facing step, a typical example of a noise-amplifier flow. Physical insight into the specifics of the flow is used to interpret and tailor the various terms of the auto-regressive model. The designed compensator shows an impressive performance as well as a remarkable robustness to increased noise levels and to off-design operating conditions. Owing to its reliance on only time-sequences of observable data, the proposed technique should be attractive in the design of control strategies directly from experimental data and should result in effective compensators that maintain performance in a realistic disturbance environment.

MSC:
76D55 Flow control and optimization for incompressible viscous fluids
93B30 System identification
93C20 Control/observation systems governed by partial differential equations
Keywords:
flow control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.physd.2003.03.001 · Zbl 1098.76602 · doi:10.1016/j.physd.2003.03.001
[2] DOI: 10.1109/9.29399 · Zbl 0687.93027 · doi:10.1109/9.29399
[3] DOI: 10.1017/S0305004100030401 · doi:10.1017/S0305004100030401
[4] DOI: 10.1109/TAC.1981.1102568 · Zbl 0464.93022 · doi:10.1109/TAC.1981.1102568
[5] DOI: 10.1017/S0022112008000323 · Zbl 1191.76053 · doi:10.1017/S0022112008000323
[6] Ma, Theor. Comput. Fluid Dyn. 25 pp 1– (2010)
[7] DOI: 10.1063/1.3622771 · Zbl 06423169 · doi:10.1063/1.3622771
[8] Ljung, System Identification: Theory for the User (1999) · Zbl 0615.93004
[9] Cattafesta, AIAA Paper pp 2003-3567– (2003)
[10] DOI: 10.1146/annurev.fluid.39.050905.110153 · doi:10.1146/annurev.fluid.39.050905.110153
[11] DOI: 10.1017/S0022112008001109 · Zbl 1151.76470 · doi:10.1017/S0022112008001109
[12] DOI: 10.2514/3.20031 · Zbl 0589.93008 · doi:10.2514/3.20031
[13] DOI: 10.1017/S002211200200232X · Zbl 1026.76019 · doi:10.1017/S002211200200232X
[14] DOI: 10.1063/1.3005860 · Zbl 1182.76334 · doi:10.1063/1.3005860
[15] Glowinski, Handbook of Numerical Analysis vol. 9 pp 3– (2003)
[16] DOI: 10.1017/S0022112009991418 · Zbl 1183.76701 · doi:10.1017/S0022112009991418
[17] DOI: 10.1016/S0005-1098(00)00059-5 · Zbl 0967.93091 · doi:10.1016/S0005-1098(00)00059-5
[18] DOI: 10.1017/S0022112008004394 · Zbl 1156.76374 · doi:10.1017/S0022112008004394
[19] Efe, IEEE Conf. Contr. Appl. 2 pp 1273– (2003) · doi:10.1109/CCA.2003.1223194
[20] DOI: 10.1137/1.9780898718713 · doi:10.1137/1.9780898718713
[21] DOI: 10.1017/S0022112007005496 · Zbl 1175.76049 · doi:10.1017/S0022112007005496
[22] Akers, Proc. Am. Contr. Conf. pp 186– (1997) · doi:10.1109/ACC.1997.611782
[23] DOI: 10.1115/1.4001478 · doi:10.1115/1.4001478
[24] DOI: 10.1017/S0022112007005204 · Zbl 1113.76008 · doi:10.1017/S0022112007005204
[25] Samimy, AIAA Paper pp 2003-4258– (2003)
[26] Rowley, Intl J. Bifurcation Chaos 15 pp 255– (2005) · Zbl 1140.76443 · doi:10.1142/S0218127405012429
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.