×

Motion and structure of atmospheric mesoscale baroclinic vortices: dry air and weak environmental shear. (English) Zbl 1248.76033

From the summary: A strongly tilted, nearly axisymmetric vortex in dry air with asymmetric diabatic heating is analysed here by matched asymptotic expansions. The vortex is in gradient wind balance, with vortex Rossby numbers of order unity, and embedded in a quasi-geostrophic (QG) background wind with weak vertical shear. With wind speeds of \(60-120 \mathrm {km \;h}^{-1}\), such vortices correspond to tropical storms or nascent hurricanes according to the Saffir-Simpson scale. For asymmetric heating, nonlinear coupling of the evolution equations for the vortex tilt, its core structure, and its influence on the QG background is found. The theory compares well with the established linear theory of precessing quasi-modes of atmospheric vortices, and it corroborates the relationship between vortex tilt and asymmetric potential temperature and vertical velocity patterns in simulations of adiabatic tropical cyclones. A relation between the present theory and the local induction approximation for three-dimensional slender vortex filaments is established.

MSC:

76B60 Atmospheric waves (MSC2010)
76B65 Rossby waves (MSC2010)
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
86A10 Meteorology and atmospheric physics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1146/annurev.earth.31.100901.141259
[2] DOI: 10.1002/qj.49712353810
[3] Eliassen, Astrophys. Norv. 5 pp 19– (1952)
[4] DOI: 10.1080/0309192031000108698 · Zbl 1206.86015
[5] DOI: 10.1002/qj.49711850507
[6] Ling, Sci. Sin. XXXI (1988)
[7] Eckhaus, Asymptotic Analysis of Singular Perturbations vol. 9 (1979) · Zbl 0421.34057
[8] DOI: 10.1016/0167-2789(91)90151-X · Zbl 0738.35063
[9] DOI: 10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2
[10] DOI: 10.1146/annurev-fluid-121108-145537 · Zbl 1213.86002
[11] DOI: 10.1137/0135013 · Zbl 0395.76024
[12] DOI: 10.1007/BF00118834 · Zbl 0880.76022
[13] DOI: 10.1175/2009JAS3031.1
[14] Bronstein, Taschenbuch der Mathematik (1979)
[15] DOI: 10.1175/1520-0469(2004)061<0114:OTAODT>2.0.CO;2
[16] Van Dyke, Perturbation Methods in Fluid Mechanics (1964)
[17] DOI: 10.1063/1.869846 · Zbl 1185.76006
[18] DOI: 10.1002/qj.49712657008
[19] Ting, Proc. 2nd Asian Congress of Fluid Mechanics pp 900– (1983)
[20] DOI: 10.1002/qj.49712152406
[21] Ting, Vortex Dominated Flows: Analysis and Computation for Multiple Scales vol. 116 (2007) · Zbl 1130.76002
[22] DOI: 10.1175/1520-0493(1999)127<2044:EOEFUT>2.0.CO;2
[23] Stewart, Q. Appl. Maths 1 pp 262– (1943) · Zbl 0063.07196
[24] DOI: 10.1175/1520-0469(1990)047<1973:AATOTC>2.0.CO;2
[25] DOI: 10.1002/qj.679
[26] DOI: 10.1002/qj.49711750003
[27] DOI: 10.1175/1520-0469(1993)050<3322:ATDBTF>2.0.CO;2
[28] DOI: 10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2
[29] DOI: 10.1175/1520-0469(2002)059<0150:ATFTVA>2.0.CO;2
[30] DOI: 10.1175/JAS3849.1
[31] DOI: 10.1175/JAS3641.1
[32] DOI: 10.1063/1.1651485 · Zbl 1186.76464
[33] DOI: 10.1016/S0377-0265(03)00015-0
[34] DOI: 10.1038/352561a0
[35] DOI: 10.1017/S0022112007006404 · Zbl 1118.76071
[36] DOI: 10.1017/S0022112007006386 · Zbl 1118.76070
[37] DOI: 10.1017/S0022112001005468 · Zbl 1046.76007
[38] DOI: 10.1017/S0022112092000144 · Zbl 0756.76015
[39] DOI: 10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2
[40] DOI: 10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2
[41] DOI: 10.1063/1.1448297 · Zbl 1185.76480
[42] DOI: 10.1007/978-1-4612-4650-3
[43] DOI: 10.1175/1520-0469(1960)017<0148:GVM>2.0.CO;2
[44] DOI: 10.1146/annurev.fl.23.010191.001143
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.