Spontaneous inertia-gravity-wave generation by surface-intensified turbulence. (English) Zbl 1248.76031

Summary: The spontaneous generation of inertia-gravity waves (IGWs) by surface-intensified, nearly balanced motion is examined using a high-resolution simulation of the primitive equations in an idealized oceanic configuration. At large scale and mesoscale, the dynamics, which is driven by baroclinic instability near the surface, is balanced and qualitatively well described by the surface quasi-geostrophic model. This however predicts an increase of the Rossby number with decreasing spatial scales and, hence, a breakdown of balance at small scale; the generation of IGWs is a consequence of this breakdown. The wave field is analysed away from the surface, at depths where the associated vertical velocities are of the same order as those associated with the balanced motion. Quasi-geostrophic relations, the omega equation in particular, prove sufficient to separate the IGWs from the balanced contribution to the motion. A spectral analysis indicates that the wave energy is localized around dispersion relation for free IGWs, and decays only slowly as the frequency and horizontal wavenumber increase. The IGW generation is highly intermittent in time and space: localized wavepackets are emitted when thin filaments in the surface density are formed by straining, leading to large vertical vorticity and correspondingly large Rossby numbers. At depth, the IGW field is the result of a number of generation events; away from the generation sites it takes the form of a relatively homogeneous, apparently random wave field. The energy of the IGW field generated spontaneously is estimated and found to be several orders of magnitude smaller than the typical IGW energy in the ocean.


76B55 Internal waves for incompressible inviscid fluids
76F99 Turbulence
86A05 Hydrology, hydrography, oceanography
Full Text: DOI Link


[1] DOI: 10.1175/2008JPO3822.1
[2] DOI: 10.1017/S0022112071001216 · Zbl 0224.76053
[3] DOI: 10.1175/2007JPO3773.1
[4] DOI: 10.1175/2007JPO3672.1
[5] DOI: 10.1175/1520-0485(2002)032<0039:TROETI>2.0.CO;2
[6] DOI: 10.1175/2007JPO3671.1
[7] DOI: 10.1175/1520-0469(1994)051<2756:QDOTT>2.0.CO;2
[8] DOI: 10.1017/CBO9780511605499 · Zbl 1180.86001
[9] Hoskins, Q. J. R. Meteorol. Soc. 104 pp 31– (1978)
[10] Blumen, J. Atmos. Sci. 35 pp 421– (1978)
[11] DOI: 10.1175/1520-0469(1972)029<0011:AFMMFA>2.0.CO;2
[12] Bender, Advanced Mathematical Methods for Scientists and Engineers (1999)
[13] DOI: 10.1017/S0022112095000012 · Zbl 0832.76012
[14] Aspden, IUTAM Symposium on Turbulence in the Atmosphere and Oceans (2010)
[15] Griffiths, Q. J. R. Meteorol. Soc. 122 pp 1153– (1996)
[16] DOI: 10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2
[17] DOI: 10.1016/0096-3003(89)90010-6 · Zbl 0685.65091
[18] Gill, Atmosphere Ocean Dynamics (1982)
[19] DOI: 10.1175/1520-0469(1967)024<0627:AFANE>2.0.CO;2
[20] DOI: 10.1175/2008JPO3821.1
[21] DOI: 10.1002/qj.49712152313
[22] DOI: 10.1175/2011JPO4537.1
[23] DOI: 10.1017/S0022112005008311 · Zbl 1087.76020
[24] DOI: 10.1175/1520-0469(2004)061<0211:ESIWAT>2.0.CO;2
[25] DOI: 10.1175/2007JAS2494.1
[26] DOI: 10.1137/070710081 · Zbl 1167.37045
[27] Thorpe, The Turbulent Ocean (2005)
[28] DOI: 10.1175/2010JAS3650.1
[29] DOI: 10.1175/1520-0469(1993)050<3194:FDNAFF>2.0.CO;2
[30] DOI: 10.1175/2007JAS2351.1
[31] DOI: 10.1016/j.ocemod.2004.08.002
[32] DOI: 10.1175/1520-0485(2004)034<0416:EOBFON>2.0.CO;2
[33] Reeder, Q. J. R. Meteorol. Soc. 122 pp 1175– (1996)
[34] DOI: 10.1175/JAS3953.1
[35] DOI: 10.1029/2005GL023730
[36] DOI: 10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2
[37] Ólafsdóttir, J. Fluid Mech. 596 pp 169– (2008) · Zbl 1165.76059
[38] DOI: 10.1029/2005JC002964
[39] DOI: 10.1175/1520-0469(1999)056<1547:TNOCTQ>2.0.CO;2
[40] DOI: 10.1017/S0022112009993272 · Zbl 1193.76065
[41] DOI: 10.1175/2009JPO4186.1
[42] DOI: 10.1029/94RG01872
[43] DOI: 10.1175/JPO2840.1
[44] DOI: 10.1175/2008JPO3810.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.