×

zbMATH — the first resource for mathematics

Bottom pressure distribution due to wave scattering near a submerged obstacle. (English) Zbl 1248.76022
Summary: The dynamic pressure distribution on the bottom of a wave flume, due to the interaction of water waves with a submerged structure, is investigated experimentally and analytically, for both first- and second-order gravity waves of finite amplitude. The dynamic pressure excess is found to be very important, even for incoming waves propagating in deep water conditions. In this depth condition, a high pressure zone, thirty times larger than the dynamic pressure excess expected in the absence of the obstacle, is found in its vicinity. On the other hand, a low pressure zone is observed in the vicinity of the submerged obstacle for incoming waves propagating in smaller depth conditions. In any case, pressure gradients remain important. The second-order disturbance is found to be larger than first order in deep water conditions, for some specific conditions and locations. This result is interpreted in terms of nonlinear coupling of first-order components, including local modes.

MSC:
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Miche, Ann. Ponts Chauss. 2 pp 131– (1944)
[2] DOI: 10.1017/S002211209000221X · Zbl 0698.76013 · doi:10.1017/S002211209000221X
[3] DOI: 10.1017/S0022112078003006 · doi:10.1017/S0022112078003006
[4] Wiechert, Beiträge Geophys. 2 pp 41– (1904)
[5] DOI: 10.1016/0378-3839(86)90022-0 · doi:10.1016/0378-3839(86)90022-0
[6] DOI: 10.1016/j.oceaneng.2004.10.020 · doi:10.1016/j.oceaneng.2004.10.020
[7] DOI: 10.1016/0029-8018(94)00042-5 · doi:10.1016/0029-8018(94)00042-5
[8] DOI: 10.1051/lhb/1960037 · doi:10.1051/lhb/1960037
[9] DOI: 10.1016/S0378-3839(01)00024-2 · doi:10.1016/S0378-3839(01)00024-2
[10] DOI: 10.1061/(ASCE)0733-950X(1989)115:3(327) · doi:10.1061/(ASCE)0733-950X(1989)115:3(327)
[11] Longuet-Higgins, Proc. R. Soc. Lond. Ser A 243 pp 1– (1950)
[12] DOI: 10.1016/S0029-8018(01)00054-3 · doi:10.1016/S0029-8018(01)00054-3
[13] DOI: 10.1016/j.wavemoti.2010.06.002 · Zbl 1229.76017 · doi:10.1016/j.wavemoti.2010.06.002
[14] Goda, Proceedings of the 15th Coastal Engineering Conference pp 828– (1976)
[15] DOI: 10.1017/S0022112083001780 · Zbl 0524.76027 · doi:10.1017/S0022112083001780
[16] DOI: 10.1175/2010JPO4440.1 · doi:10.1175/2010JPO4440.1
[17] DOI: 10.1098/rspa.2007.0026 · Zbl 1132.81004 · doi:10.1098/rspa.2007.0026
[18] DOI: 10.1029/2008GL035008 · doi:10.1029/2008GL035008
[19] DOI: 10.1029/RG001i002p00177 · doi:10.1029/RG001i002p00177
[20] DOI: 10.2991/jnmp.2008.15.s2.4 · Zbl 06723994 · doi:10.2991/jnmp.2008.15.s2.4
[21] DOI: 10.1017/S0022112092000478 · doi:10.1017/S0022112092000478
[22] Cavaleri, Oceanol. Acta 3 pp 339– (1980)
[23] DOI: 10.1016/0141-1187(84)90029-4 · doi:10.1016/0141-1187(84)90029-4
[24] DOI: 10.1016/0378-3839(87)90031-7 · doi:10.1016/0378-3839(87)90031-7
[25] DOI: 10.1016/0378-3839(78)90005-4 · doi:10.1016/0378-3839(78)90005-4
[26] DOI: 10.1016/j.apor.2005.12.003 · doi:10.1016/j.apor.2005.12.003
[27] DOI: 10.1017/S0022112099004978 · Zbl 0959.76009 · doi:10.1017/S0022112099004978
[28] DOI: 10.1029/2011JC006952 · doi:10.1029/2011JC006952
[29] DOI: 10.1016/j.apor.2011.02.002 · doi:10.1016/j.apor.2011.02.002
[30] DOI: 10.1016/S0378-3839(02)00096-0 · doi:10.1016/S0378-3839(02)00096-0
[31] Rey, Eur. J. Mech. B 14 pp 207– (1995)
[32] Rey, Eur. J. Mech. B 11 pp 213– (1992)
[33] DOI: 10.1061/(ASCE)0733-950X(1989)115:3(384) · doi:10.1061/(ASCE)0733-950X(1989)115:3(384)
[34] DOI: 10.1029/2005JC003035 · doi:10.1029/2005JC003035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.