×

zbMATH — the first resource for mathematics

High-precision computation: mathematical physics and dynamics. (English) Zbl 1248.65147
Summary: At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents an overview of recent applications of these techniques and provides some analysis of their numerical requirements. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

MSC:
65Y15 Packaged methods for numerical algorithms
68N30 Mathematical aspects of software engineering (specification, verification, metrics, requirements, etc.)
68W30 Symbolic computation and algebraic computation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Abad, R. Barrio, F. Blesa, M. Rodriguez, TIDES: a Taylor series integrator for differential equations, ACM Trans. Math. Software, in press, Software available online at . · Zbl 1295.65138
[2] Abad, Alberto; Barrio, Roberto; Dena, Angeles, Computing periodic orbits with arbitrary precision, Phys. rev. E, 84, 016701, (2011)
[3] ()
[4] Applegate, J.; Douglas, M.; Gursel, Y.; Sussman, G.J.; Wisdom, J., The outer solar system for 200 million years, Astron. J., 92, 176-194, (1986)
[5] D.H. Bailey, A compendium of BBP-type formulas, Apr. 2011, available at . An interactive database is online at http://bbp.carma.newcastle.edu.au.
[6] Bailey, D.H.; Borwein, P.B.; Plouffe, S., On the rapid computation of various polylogarithmic constants, Math. comput., 66, 903-913, (1997) · Zbl 0879.11073
[7] Bailey, D.H.; Borwein, J.M., Experimental mathematics: examples, methods and implications, Not. AMS, 52, 502-514, (2005) · Zbl 1087.65127
[8] D.H. Bailey, J.M. Borwein, Hand-to-hand combat with thousand-digit integrals, J. Comput. Sci., in press, .
[9] D.H. Bailey, J.M. Borwein, Nonnormality of Stoneham constants, 8 Dec 2011, available at . · Zbl 1336.11055
[10] D.H. Bailey, J.M. Borwein, C.S. Calude, M.J. Dinneen, M. Dumitrescu, A. Yee, An empirical approach to the normality of pi, Expt. Math., in press. · Zbl 1281.11077
[11] Bailey, D.H.; Borwein, J.M.; Crandall, R.E., Integrals of the Ising class, J. phys. A: math. gen., 39, 12271-12302, (2006) · Zbl 1113.65023
[12] Bailey, D.H.; Borwein, D.; Borwein, J.M.; Crandall, R., Hypergeometric forms for Ising-class integrals, Expt. math., 16, 257-276, (2007) · Zbl 1134.33016
[13] D.H. Bailey, J.M. Borwein, A. Mattingly, G. Wightwick, The computation of previously inaccessible digits of \(\pi^2\) and Catalans constant, Not. AMS, in press, . · Zbl 1382.11097
[14] Bailey, D.H.; Broadhurst, D., Parallel integer relation detection: techniques and applications, Math. comput., 70, 1719-1736, (2000) · Zbl 1037.11090
[15] Bailey, D.H.; Crandall, R.E., On the random character of fundamental constant expansions, Expt. math., 10, 175-190, (2001) · Zbl 1047.11073
[16] Bailey, D.H.; Crandall, R.E., Random generators and normal numbers, Expt. math., 11, 527-546, (2004) · Zbl 1165.11328
[17] Bailey, D.H.; Frolov, A.M., Universal variational expansion for high-precision bound-state calculations in three-body systems. applications to weakly-bound, adiabatic and two-shell cluster systems, J. phys. B, 35, 4287-4298, (2002)
[18] Bailey, D.H.; Li, X.S.; Jeyabalan, K., A comparison of three high-precision quadrature schemes, Expt. math., 14, 317-329, (2005) · Zbl 1082.65028
[19] D.H. Bailey, X.S. Li, B. Thompson, ARPREC: an arbitrary precision computation package, Sep. 2002, .
[20] E. Baron, P. Nugent, Personal communication, Nov. 2004.
[21] Barrio, R., Performance of the Taylor series method for ODEs/daes, Appl. math. comput., 163, 525-545, (2005) · Zbl 1067.65063
[22] Barrio, R., Sensitivity analysis of ODEs/DAEs using the Taylor series method, SIAM J. sci. comput., 27, 1929-1947, (2006) · Zbl 1108.65077
[23] Barrio, R.; Blesa, F., Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems, Chaos solitons fract., 41, 560-582, (2009) · Zbl 1198.37091
[24] Barrio, R.; Blesa, F.; Lara, M., VSVO formulation of the Taylor method for the numerical solution of odes, Comput. math. appl., 50, 93-111, (2005) · Zbl 1085.65056
[25] Barrio, R.; Blesa, F.; Serrano, S., Qualitative analysis of the \((n + 1)\)-body ring problem, Chaos solitons fract., 36, 1067-1088, (2008) · Zbl 1283.70010
[26] Barrio, R.; Melendo, B.; Serrano, S., Generation and evaluation of orthogonal polynomials in discrete Sobolev spaces I. algorithms, J. comput. appl. math., 181, 280-298, (2005) · Zbl 1066.42017
[27] Barrio, R.; Rodríguez, M.; Abad, A.; Blesa, F., Breaking the limits: the Taylor series method, Appl. math. comput., 217, 7940-7954, (2011) · Zbl 1219.65064
[28] Barrio, R.; Serrano, S., Generation evaluation of orthogonal polynomials in discrete Sobolev spaces II. numerical stability, J. comput. appl. math., 181, 299-320, (2005) · Zbl 1073.65018
[29] Berger, C.F.; Bern, Z.; Dixon, L.J.; Cordero, F. Febres; Forde, D.; Ita, H.; Kosower, D.A.; Maitre, D., An automated implementation of on-shell methods for one-loop amplitudes, Phys. rev. D, 78, 036003, (2008)
[30] Borwein, J.M.; Bailey, D.H., Mathematics by experiment: plausible reasoning in the 21st century, (2008), A.K. Peters Natick, MA · Zbl 1163.00002
[31] Borwein, J.M.; Bailey, D.H., Experimentation in mathematics: computational paths to discovery, (2004), A.K. Peters Natick, MA · Zbl 1083.00002
[32] Borwein, J.M.; Borwein, P.B., The arithmetic-geometric Mean and the fast computation of elementary functions, SIAM rev., 26, 351-366, (1984) · Zbl 0557.65009
[33] J.M. Borwein, P.B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Canadian Mathematical Society Monographs, Wiley-Interscience, New York, 1987, reprinted 1998. · Zbl 0611.10001
[34] J.M. Borwein, P.B. Borwein, D.H. Bailey, Ramanujan, modular equations and pi or how to compute a billion digits of pi, American Mathematical Monthly, vol. 96 (1989) 201-219; reprinted in Organic Mathematics Proceedings, , April 12, 1996, with print version: CMS/AMS Conference Proceedings, vol. 20 (1997) ISSN: 0731-1036. · Zbl 0672.10017
[35] J.M. Borwein, A. Straub, J. Wan, Three-step and four-step random walk integrals, Expt. Math., in press, Sep. 2010, . · Zbl 1268.33005
[36] Jonathan M. Borwein, Armin Straub, James Wan, Wadim Zudilin, with an Appendix by Don Zagier, Densities of short uniform random walks, Can. Math. J. Galleys, October 2011. Available at .
[37] Brent, R.P.; Zimmermann, P., Modern computer arithmetic, (2010), Cambridge Univ. Press
[38] Clenshaw, C.W., A note on the summation of Chebyshev series, Math. tab. wash., 9, 118-120, (1955) · Zbl 0065.05403
[39] Corliss, G.; Chang, Y.F., Solving ordinary differential equations using Taylor series, ACM trans. math. software, 8, 114-144, (1982) · Zbl 0503.65046
[40] Czakon, M., Tops from light quarks: full mass dependence at two-loops in QCD, Phys. lett. B, 664, 307, (2008)
[41] Dekker, T.J., A floating-point technique for extending the available precision, Numer. math., 18, 224-242, (1971) · Zbl 0226.65034
[42] Demmel, J.; Koev, P., The accurate and efficient solution of a totally positive generalized Vandermonde linear system, SIAM J. matrix anal. appl., 27, 145-152, (2005) · Zbl 1096.65031
[43] Evans, W.D.; Littlejohn, L.L.; Marcellán, F.; Markett, C.; Ronveaux, A., On recurrence relations for Sobolev orthogonal polynomials, SIAM J. math. anal., 26, 446-467, (1995) · Zbl 0824.33006
[44] J. Dongarra, “LAPACK”, .
[45] J. Dongarra, “LINPACK”, .
[46] R.K. Ellis, W.T. Giele, Z. Kunszt, K. Melnikov, G. Zanderighi, One-loop amplitudes for W+3 jet production in hadron collisions, manuscript, 15 Oct. 2008, .
[47] Ferris, T., Coming of age in the milky way, (2003), HarperCollins New York
[48] Frolov, A.M.; Bailey, D.H., Highly accurate evaluation of the few-body auxiliary functions and four-body integrals, J. phys. B, 36, 1857-1867, (2003)
[49] Gautschi, W., Computational aspects of three-term recurrence relations, SIAM rev., 9, 24-82, (1967) · Zbl 0168.15004
[50] Gelfreich, V.; Simó, C., High-precision computations of divergent asymptotic series and homoclinic phenomena, Discrete contin. dynam. syst. ser. B, 10, 511-536, (2008) · Zbl 1169.37013
[51] Graillat, S.; Langlois, P.; Louvet, N., Algorithms for accurate validated and fast polynomial evaluation, Japan J. indust. appl. math., 26, 191-214, (2009) · Zbl 1184.65029
[52] Grebogi, C.; Ott, E.; Pelikan, S.; Yorke, J.A., Strange attractors that are not chaotic, Phys. D, 13, 261-268, (1984) · Zbl 0588.58036
[53] Hairer, E.; Nørsett, S.; Wanner, G., Solving ordinary differential equations. I. nonstiff problems, () · Zbl 1185.65115
[54] Hakim, Vincent; Mallick, Kirone, Exponentially small splitting of separatrices matching in the complex plane and Borel summation, Nonlinearity, 6, 57-70, (1993) · Zbl 0769.34036
[55] Hauschildt, P.H.; Baron, E., The numerical solution of the expanding stellar atmosphere problem, J. comput. appl. math., 109, 41-63, (1999) · Zbl 0932.85002
[56] A. Haro, C. Simó, To be or not to be a SNA: That is the question, Preprint 2005-17 of the Barcelona UB-UPC Dynamical Systems Group, 2005.
[57] Hayes, W., Is the outer solar system chaotic?, Nature phys., 3, 689-691, (2007)
[58] He, Y.; Ding, C., Using accurate arithmetics to improve numerical reproducibility and stability in parallel applications, J. supercomput., 18, 259-277, (2001) · Zbl 0979.68625
[59] Y. Hida, X.S. Li, D.H. Bailey, Algorithms for quad-double precision floating point arithmetic, in: 15th IEEE Symposium on Computer Arithmetic (ARITH-15), 2001.
[60] Jiang, H.; Barrio, R.; Li, H.; Liao, X.; Cheng, L.; Su, F., Accurate evaluation of a polynomial in Chebyshev form, Appl. math. comput., 217, 9702-9716, (2011) · Zbl 1228.65028
[61] Knuth, D.E., The art of computer programming: seminumerical algorithms, (1998), Addison-Wesley third ed. · Zbl 0895.65001
[62] P. Koev, Software, 2010, .
[63] G. Lake, T. Quinn, D.C. Richardson, From Sir Isaac to the Sloan survey: Calculating the structure and chaos due to gravity in the universe, in: Proc. of the 8th ACM-SIAM Symp. on Discrete Algorithms, SIAM, Philadelphia, 1997, pp. 1-10.
[64] Lamb, J.S.W., Reversing symmetries in dynamical systems, J. phys. A: math. gen., 25, 925-937, (1992) · Zbl 0751.70010
[65] Lucas, S.K.; Stone, H.A., Evaluating infinite integrals involving Bessel functions of arbitrary order, J. comput. appl. math., 64, 217-231, (1995) · Zbl 0857.65025
[66] Lazutkin, V.F., Splitting of separatrices for the chirikov standard map, J. math. sci., 128, 2687-2705, (2005) · Zbl 1120.37039
[67] Lorenz, E., Deterministic nonperiodic flow, J. atmos. sci., 20, 130-141, (1963) · Zbl 1417.37129
[68] Ogita, T.; Rump, S.M.; Oishi, S., Accurate sum and dot product, SIAM J. sci. comput., 26, 1955-1988, (2005) · Zbl 1084.65041
[69] Ossola, G.; Papadopoulos, C.G.; Pittau, R., Cuttools: a program implementing the OPP reduction method to compute one-loop amplitudes, J. high-energy phys., 83, 042, (2008)
[70] Press, W.H.; Eukolsky, S.A.; Vetterling, W.T.; Flannery, B.P., Numerical recipes: the art of scientific computing, (2007), Cambridge University Press · Zbl 1132.65001
[71] Robey, R.W.; Robey, J.M.; Aulwes, R., In search of numerical consistency in parallel programming, Parallel comput., 37, 217-219, (2011)
[72] Rump, S.M., Verification methods: rigorous results using floating-point arithmetic, Acta numer., 19, 287-449, (2010) · Zbl 1323.65046
[73] Sidi, A., The numerical evaluation of very oscillatory infinite integrals by extrapolation, Math. comput., 38, 517-529, (1982) · Zbl 0508.65011
[74] Sidi, A., A user-friendly extrapolation method for oscillatory infinite integrals, Math. comput., 51, 249-266, (1988) · Zbl 0694.40004
[75] A. Sidi, A user-friendly extrapolation method for computing infinite-range integrals of products of oscillatory functions, IMA J. Numer. Anal., in press, . · Zbl 1298.65039
[76] Simó, C., Global dynamics and fast indicators, (), 373-389 · Zbl 1198.37115
[77] H. Takahasi, M. Mori, Double exponential formulas for numerical integration, in: Pub. RIMS, Kyoto University vol. 9, 1974, pp. 721-741. · Zbl 0293.65011
[78] Tse-Wo Zse, Personal communication to the authors, July 2010.
[79] Viswanath, D., The lindstedt – poincaré technique as an algorithm for computing periodic orbits, SIAM rev., 43, 478-495, (2001) · Zbl 0979.65115
[80] Viswanath, D., The fractal property of the Lorenz attractor, Phys. D, 190, 115-128, (2004) · Zbl 1041.37013
[81] Viswanath, D.; Şahutoˇglu, S., Complex singularities and the Lorenz attractor, SIAM rev., 52, 294-314, (2010) · Zbl 1202.34153
[82] J. Wan, Moments of products of elliptic integrals, preprint, Oct. 2010.
[83] Yan, Z.-C.; Drake, G.W.F., Bethe logarithm and QED shift for lithium, Phys. rev. lett., 81, 774-777, (2003)
[84] Zhang, T.; Yan, Z.-C.; Drake, G.W.F., QED corrections of \(O(\mathit{MC}^2 \alpha^7 \ln \alpha)\) to the fine structure splittings of helium and he-like ions, Phys. rev. lett., 77, 1715-1718, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.