zbMATH — the first resource for mathematics

The 2D Boussinesq equations with logarithmically supercritical velocities. (English) Zbl 1248.35156
Summary: This paper investigates the global (in time) regularity of solutions to a system of equations that generalize the vorticity formulation of the 2D Boussinesq-Navier-Stokes equations. The velocity \(u\) in this system is related to the vorticity \(\omega\) through the relations \(u= \nabla^\perp\psi\) and \(\Delta\psi= \Lambda^\sigma(\log(I- \Delta))^\gamma \omega\), which reduces to the standard velocity-vorticity relation when \(\sigma=\gamma=0\). When either \(\sigma>0\) or \(\gamma>0\), the velocity \(u\) is more singular. The “quasi-velocity” \(v\) determined by \(\nabla\times v=\omega\) satisfies an equation of very special structure.
This paper establishes the global regularity and uniqueness of solutions for the case when \(\sigma=0\) and \(\gamma\geq 0\). In addition, the vorticity \(\omega\) is shown to be globally bounded in several functional settings such as \(L^2\) for \(\sigma>0\) in a suitable range.

35Q35 PDEs in connection with fluid mechanics
35B35 Stability in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
Full Text: DOI arXiv
[1] Abidi, H.; Hmidi, T., On the global well-posedness for Boussinesq system, J. differential equations, 233, 199-220, (2007) · Zbl 1111.35032
[2] Adhikari, D.; Cao, C.; Wu, J., The 2D Boussinesq equations with vertical viscosity and vertical diffusivity, J. differential equations, 249, 1078-1088, (2010) · Zbl 1193.35144
[3] Adhikari, D.; Cao, C.; Wu, J., Global regularity results for the 2D Boussinesq equations with vertical dissipation, J. differential equations, 251, 1637-1655, (2011) · Zbl 1232.35111
[4] Bahouri, H.; Chemin, J.-Y.; Danchin, R., Fourier analysis and nonlinear partial differential equations, (2011), Springer · Zbl 1227.35004
[5] Bergh, J.; Löfström, J., Interpolation spaces, an introduction, (1976), Springer-Verlag Berlin, Heidelberg, New York · Zbl 0344.46071
[6] Cannon, J.R.; DiBenedetto, E., (), 129-144
[7] C. Cao, J. Wu, Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation, 12 August 2011. arXiv:1108.2678v1 [math.AP]. · Zbl 1232.35111
[8] Chae, D., Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. math., 203, 497-513, (2006) · Zbl 1100.35084
[9] D. Chae, P. Constantin, D. Córdoba, F. Gancedo, J. Wu, Generalized surface quasi-geostrophic equations with singular velocities, Comm. Pure Appl. Math., (2011). Also available: arXiv:1101.3537v1 [math.AP] (in press).
[10] D. Chae, P. Constantin, J. Wu, Dissipative models generalizing the 2D Navier-Stokes and the surface quasi-geostrophic equations, Indiana Univ. Math. J., (2010). Also available: arXiv:1011.0171 [math.AP] (in press).
[11] Chae, D.; Constantin, P.; Wu, J., Inviscid models generalizing the 2D Euler and the surface quasi-geostrophic equations, Arch. ration. mech. anal., 202, 35-62, (2011) · Zbl 1266.76010
[12] Constantin, P.; Iyer, G.; Wu, J., Global regularity for a modified critical dissipative quasi-geostrophic equation, Indiana univ. math. J., 57, 2681-2692, (2008) · Zbl 1159.35059
[13] P. Constantin, V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, 2011. arXiv:1110.0179v1 [math.AP]. · Zbl 1256.35078
[14] M. Dabkowski, A. Kiselev, V. Vicol, Global well-posedness for a slightly supercritical surface quasi-geostrophic equation, 2011. arXiv:1106.2137 [math.AP]. · Zbl 1239.35121
[15] Danchin, R.; Paicu, M., Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Physica D, 237, 1444-1460, (2008) · Zbl 1143.76432
[16] Danchin, R.; Paicu, M., Global well-posedness issues for the inviscid Boussinesq system with yudovich’s type data, Comm. math. phys., 290, 1-14, (2009) · Zbl 1186.35157
[17] Danchin, R.; Paicu, M., Global existence results for the anisotropic Boussinesq system in dimension two, Math. models methods appl. sci., 21, 421-457, (2011) · Zbl 1223.35249
[18] Hmidi, T.; Keraani, S., On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. differential equations, 12, 461-480, (2007) · Zbl 1154.35073
[19] Hmidi, T.; Keraani, S., On the global well-posedness of the Boussinesq system with zero viscosity, Indiana univ. math. J., 58, 1591-1618, (2009) · Zbl 1178.35303
[20] Hmidi, T.; Keraani, S.; Rousset, F., Global well-posedness for a boussinesq – navier – stokes system with critical dissipation, J. differential equations, 249, 2147-2174, (2010) · Zbl 1200.35228
[21] Hmidi, T.; Keraani, S.; Rousset, F., Global well-posedness for euler – boussinesq system with critical dissipation, Comm. partial differential equations, 36, 420-445, (2011) · Zbl 1284.76089
[22] Hou, T.; Li, C., Global well-posedness of the viscous Boussinesq equations, Discrete contin. dyn. syst., 12, 1-12, (2005) · Zbl 1274.76185
[23] Kiselev, A., Nonlocal maximum principles for active scalars, Adv. math., 227, 1806-1826, (2011) · Zbl 1244.35022
[24] A. Larios, E. Lunasin, E.S. Titi, Global well-posedness for the 2D Boussinesq system without heat diffusion and with either anisotropic viscosity or inviscid Voigt-\(a\) regularization, 2010. arXiv:1010.5024v1 [math.AP]. · Zbl 1284.35343
[25] Majda, A.J., ()
[26] Majda, A.J.; Bertozzi, A.L., Vorticity and incompressible flow, (2001), Cambridge University Press
[27] Miao, C.; Xue, L., On the global well-posedness of a class of boussinesq – navier – stokes systems, Nodea nonlinear differential equations appl., 18, 6, 707-735, (2011) · Zbl 1235.76020
[28] Miao, C.; Xue, L., On the regularity of a class of generalized quasi-geostrophic equations, J. differential equations, 251, 10, 2789-2821, (2011) · Zbl 1292.76071
[29] Moffatt, H.K., Some remarks on topological fluid mechanics, (), 3-10 · Zbl 1100.76500
[30] Pedlosky, J., Geophysical fluid dyanmics, (1987), Springer-Verlag New York
[31] Runst, T.; Sickel, W., Sobolev spaces of fractional order, Nemytskij operators and nonlinear partial differential equations, (1996), Walter de Gruyter Berlin, New York · Zbl 0873.35001
[32] Triebel, H., Theory of function spaces II, (1992), Birkhäuser-Verlag · Zbl 0778.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.