Dai, M.; Olsen, L.; Shi, Y. Multifractal \(q\) Rényi dimensions of Polish spaces for \(q < 1\). (English) Zbl 1248.28008 Stoch. Dyn. 12, No. 3, 1150027, 22 p. (2012). MSC: 28A80 Fractals Keywords:multifractals; Rényi dimensions PDF BibTeX XML Cite \textit{M. Dai} et al., Stoch. Dyn. 12, No. 3, 1150027, 22 p. (2012; Zbl 1248.28008) Full Text: DOI References: [1] Assouad P., C. R. Acad. Sér Paris Ser. A 288 pp 731– [2] Cutler C., Nonlinear Time Ser. Chaos 1, in: Dimension Estimation and Models (1993) [3] Falconer K. J., Fractal Geometry-Mathematical Foundations and Applications (1990) · Zbl 0689.28003 [4] DOI: 10.1007/978-1-4613-0131-8 · Zbl 0985.46008 · doi:10.1007/978-1-4613-0131-8 [5] DOI: 10.1090/S0002-9939-98-04201-4 · Zbl 0897.28007 · doi:10.1090/S0002-9939-98-04201-4 [6] Luukkainen J., J. Korean Math. Soc. 35 pp 23– [7] DOI: 10.1007/s00605-008-0546-0 · Zbl 1157.28002 · doi:10.1007/s00605-008-0546-0 [8] DOI: 10.1016/B978-1-4832-0022-4.50006-5 · doi:10.1016/B978-1-4832-0022-4.50006-5 [9] DOI: 10.1070/IM1988v030n03ABEH001034 · Zbl 0727.28012 · doi:10.1070/IM1988v030n03ABEH001034 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.