zbMATH — the first resource for mathematics

Hodge and Newton and tame inertia polygons of semi-stable representations. (Polygones de Hodge, de Newton et de l’inertie modérée des représentations semi-stables.) (French) Zbl 1248.11092
Summary: Fix \(K\) a \(p\)-adic field and denote by \(G_K\) its absolute Galois group. Let \(K_\infty\) be the extension of \(K\) obtained by adding \(p^n\)-th roots of a fixed uniformizer, and \(G_\infty\subset G_K\) its absolute Galois group. In this article, we define a class of \(p\)-adic torsion representations of \(G_\infty\), called quasi-semi-stable. We prove that these representations are “explicitly” described by a certain category of linear algebraic objects. The results of this note should be considered as a first step in the understanding of the structure of quotient of two lattices in a crystalline (resp. semi-stable) Galois representation.

11S15 Ramification and extension theory
14F30 \(p\)-adic cohomology, crystalline cohomology
Full Text: DOI
[1] Breuil C.: Représentations p-adiques semi-stables et transversalité de Griffiths. Math. Annalen 307, 191–224 (1997) · Zbl 0883.11049 · doi:10.1007/s002080050031
[2] Breuil C.: Construction de représentations p-adiques semi-stables. Ann. Scient. ENS. 31, 281–327 (1997) · Zbl 0907.14006
[3] Breuil C.: Représentation semi-stables et modules fortement divisibles. Invent. math. 136, 89–122 (1999) · Zbl 0965.14021 · doi:10.1007/s002220050305
[4] Breuil C.: Integral p-adic Hodge theory. Adv. Stud. Pure Math. 36, 51–80 (2002) · Zbl 1046.11085
[5] Breuil C., Mézard A.: Multiplicités modulaires et représentations de \({\text{GL}_2(\mathbb {Z}_p)}\) et de \({\text{Gal}}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)\) en = p. Duke math. J. 115, 205–310 (2002) · Zbl 1042.11030 · doi:10.1215/S0012-7094-02-11522-1
[6] Caruso X.: Représentations semi-stables de torsion dans le cas er < p 1. J. reine angew. Math. 594, 35–92 (2006) · Zbl 1134.14013 · doi:10.1515/CRELLE.2006.035
[7] Caruso, X., Savitt, D.: Poids de l’inertie modérée de certaines représentations cristallines, en préparation · Zbl 1223.14022
[8] Curtis C., Reiner I.: Representation theory of finite groups and associative algebras. Interscience Publ., New York (1962) · Zbl 0131.25601
[9] Fontaine, J.M.: Le corps des périodes p-adiques, Astérisque 223, Soc. math. France (1994), 59–111
[10] Fontaine, J.M.: Représentations p-adiques semi-stables, Astérisque 223, Soc. math. France (1994), 113–184
[11] Fontaine J.M., Laffaille G.: Construction de représentations p-adiques. Ann. Scient. ENS. 15, 547–608 (1982) · Zbl 0579.14037
[12] Kisin, M.: Crystalline representations and F-crystals, Algebraic Geometry and Number Theory, Drinfeld 50th Birthday volume, 459–496 · Zbl 1184.11052
[13] Liu T.: On lattices in semi-stable representations: a proof of a conjecture of Breuil. Compositio math. 144, 61–88 (2008) · Zbl 1133.14020 · doi:10.1112/S0010437X0700317X
[14] Serre J.P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. math. 15, 259–331 (1972) · Zbl 0235.14012 · doi:10.1007/BF01405086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.