×

zbMATH — the first resource for mathematics

New Lie-algebraic and quadratic deformations of Minkowski space from twisted Poincaré symmetries. (English) Zbl 1247.81216
Summary: We consider two new classes of twisted \(D=4\) quantum Poincaré symmetries described as the dual pairs of noncocommutative Hopf algebras. Firstly we investigate a two-parameter class of twisted Poincaré algebras which provide the examples of Lie-algebraic noncommutativity of the translations. The corresponding associative star-products and new deformed Lie-algebraic Minkowski spaces are introduced. We discuss further the twist deformations of Poincaré symmetries generated by the twist with its carrier in Lorentz algebra. We describe corresponding deformed Poincaré group which provides the quadratic deformations of translation sector and define the quadratically deformed Minkowski space-time algebra.

MSC:
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Doplicher, S.; Fredenhagen, K.; Roberts, J.E.; Doplicher, S.; Fredenhagen, K.; Roberts, J.E., Phys. lett. B, Commun. math. phys., 172, 187, (1995)
[2] Kempf, A.; Mangano, G., Phys. rev. D, 55, 7909, (1997)
[3] Seiberg, N.; Witten, E., Jhep, 9909, 032, (1999)
[4] de Boer, J.; Grassi, P.A.; van Nieuwenhuizen, P., Phys. lett. B, 574, 98, (2003)
[5] Wess, J.
[6] Chaichian, M.; Kulish, P.P.; Nishijima, K.; Tureanu, A., Phys. lett. B, 604, 98, (2004)
[7] Kosiński, P.; Maślanka, P.
[8] Koch, F.; Tsouchnika, E., Nucl. phys. B, 717, 387, (2005)
[9] Chaichian, M.; Presnajder, P.; Tureanu, A., Phys. rev. lett., 94, 151602, (2005)
[10] Gonera, C.; Kosinski, P.; Maslanka, P.; Giller, S.
[11] Oeckl, R., Nucl. phys. B, 581, 559, (2000)
[12] Zakrzewski, S.
[13] Reshetikhin, N.Yu., Lett. math. phys., 20, 331, (1990)
[14] Lukierski, J.; Nowicki, A.; Ruegg, H.; Tolstoy, V.N., J. phys. A, 27, 2389, (1994)
[15] Aschieri, P.; Castellani, L., Int. J. mod. phys. A, 11, 4513, (1996)
[16] Aschieri, P.; Castellani, L.; Scarfone, A.M., Eur. phys. J. C, 7, 159, (1999)
[17] Jambor, C.; Sykora, A.
[18] Aschieri, P.; Dimitrijevic, M.; Meyer, F.; Wess, J.
[19] Ogievetsky, V., Suppl. rend. gr. math. Palermo, ser. II, 37, 185, (1993)
[20] Kulish, P.P.; Lyakhovsky, V.D.; Mudrov, A., J. math. phys., 40, 4569, (1993)
[21] Kulish, P.P.; Lyakhovsky, V.D.; del Olmo, M.A., J. phys. A, 32, 8671, (1999)
[22] Chari, V.; Pressley, A., A guide to quantum groups, (1995), Cambridge Univ. Press Cambridge · Zbl 0839.17010
[23] Faddeev, L.D.; Reshetikhin, N.Yu.; Takhtadzhyan, L.A., Leningrad math. J., 1, (1990)
[24] Blohmann, C., J. math. phys., 44, 4736, (2003)
[25] Blohmann, C.
[26] Kosiński, P.; Maślanka, P., (), 41
[27] Aschieri, P.; Blohmann, Ch.; Dimitrijevic, M.; Meyer, F.; Schupp, P.; Wess, J.
[28] Kobayashi, Y.; Sasaki, S.
[29] Zakrzewski, S., Lett. math. phys., 32, 11, (1994)
[30] Lukierski, J.; Lyakhovsky, V.D.; Mozrzymas, M., Phys. lett. B, 538, 375, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.