×

zbMATH — the first resource for mathematics

Box compactification and supersymmetry breaking. (English) Zbl 1247.81205
Summary: We discuss all possible compactifications on flat three-dimensional spaces. In particular, various fields are studied on a box with opposite sides identified, after two of them are rotated by \(\pi \), and their spectra are obtained. The compactification of a general 7D supersymmetric theory in such a box is considered and the corresponding four-dimensional theory is studied, in relation to the boundary conditions chosen. The resulting spectrum, according to the allowed field boundary conditions, corresponds to partially or completely broken supersymmetry. We briefly discuss also the breaking of gauge symmetries under the proposed box compactification.

MSC:
81R40 Symmetry breaking in quantum theory
81T60 Supersymmetric field theories in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Green, M.B.; Schwarz, J.H.; Witten, E., Superstring theory, (1987), Cambridge Univ. Press Cambridge
[2] Polchinski, J.
[3] Scherk, J.; Schwarz, J.H.; Scherk, J.; Schwarz, J.H.; Cremmer, E.; Scherk, J.; Schwarz, J.H., Phys. lett. B, Nucl. phys. B, Phys. lett. B, 84, 83, (1979)
[4] Fayet, P., Nucl. phys. B, 246, 89, (1984)
[5] Fayet, P., Nucl. phys. B, 263, 649, (1986)
[6] Rohm, R.; Itoyama, H.; Taylor, T.R., Nucl. phys. B, Phys. lett. B, 186, 129, (1987)
[7] Ferrara, S.; Kounnas, C.; Porrati, M.; Kounnas, C.; Porrati, M.; Kounnas, C.; Rostand, B., Phys. lett. B, Nucl. phys. B, Nucl. phys. B, 341, 641, (1990)
[8] Pomarol, A.; Quiros, M.; Antoniadis, I.; Dimopoulos, S.; Pomarol, A.; Quiros, M.; Delgado, A.; Pomarol, A.; Quiros, M., Phys. lett. B, Nucl. phys. B, Phys. rev. D, 60, 095008, (1999)
[9] Antoniadis, I.; Lykken, J.D., Phys. lett. B, Phys. rev. D, 54, 3693, (1996)
[10] Antoniadis, I.; Dimopoulos, S.; Dvali, G.R.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R., Nucl. phys. B, Phys. lett. B, 429, 263, (1998)
[11] Amati, D.; Konishi, K.; Meurice, Y.; Rossi, G.C.; Veneziano, G.; Nilles, H.P., Phys. rep., Int. J. mod. phys. A, 5, 4199, (1990)
[12] Antoniadis, I.; Dudas, E.; Sagnotti, A.; Angelantonj, C.; Antoniadis, I.; D’Appollonio, G.; Dudas, E.; Sagnotti, A.; Antoniadis, I.; Benakli, K.; Quiros, M., Phys. lett. B, Nucl. phys. B, Nucl. phys. B, 583, 35, (2000)
[13] Anisimov, A.; Dine, M.; Graesser, M.; Thomas, S.; Mayr, P.; Antoniadis, I.; Benakli, K.; Laugier, A.; Maillard, T.; Rattazzi, R.; Scrucca, C.A.; Strumia, A., Phys. rev. D, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, 674, 171, (2003)
[14] Bachas, C.
[15] Taylor, T.R.; Vafa, C.; Becker, K.; Becker, M.; Haack, M.; Louis, J.; Camara, P.G.; Ibanez, L.E.; Uranga, A.M., Phys. lett. B, Jhep, 0206, 060, (2002)
[16] Wolf, J.; Ellis, G.F.R.; Lachieze-Rey, M.; Luminet, J.P., Spaces of constant curvature, Gen. relativ. gravit., Phys. rep., 254, 135, (1995), McGraw-Hill New York
[17] Dobrescu, B.A.; Ponton, E.
[18] Bergshoeff, E.; Koh, I.G.; Sezgin, E., Phys. rev. D, 32, 1353, (1985)
[19] Gherghetta, T.; Kehagias, A.; Gherghetta, T.; Kehagias, A., Phys. rev. lett., Phys. rev. D, 68, 065019, (2003)
[20] Dixon, L.J.; Harvey, J.A.; Vafa, C.; Witten, E.; Dixon, L.J.; Harvey, J.A.; Vafa, C.; Witten, E., Nucl. phys. B, Nucl. phys. B, 274, 285, (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.