×

Non-body-fitted Cartesian-mesh simulation of highly turbulent flows using multi-relaxation-time lattice Boltzmann method. (English) Zbl 1247.76064

Summary: We present a lattice Boltzmann method (LBM) based study aimed at numerical simulation of highly turbulent and largely inclined flow around obstacles of curved geometry using non-body-fitted Cartesian meshes. The approach features (1) combining the interpolated bounce-back scheme with the LBM of multi-relaxation-time (MRT) type to enable the use of simple Cartesian mesh for the flow cases even with complex geometries; and (2) incorporating the Spalart-Allmaras (SA) turbulence model into LBM in order to represent the turbulent flow effect. The numerical experiments are performed corresponding to flows around an NACA0012 airfoil at \(Re=5\times 10^{5}\) and around a flat plate at \(Re=2\times 10^{4}\), respectively. The agreement between all simulation results obtained from this study and the data provided by other literature demonstrates the reliability of the enhanced LBM proposed in this paper for simulating, simply on Cartesian meshes, complex flows that may involve bodies of curved boundary, high Reynolds number, and large angle of attack.

MSC:

76M28 Particle methods and lattice-gas methods
76F99 Turbulence
76F65 Direct numerical and large eddy simulation of turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lallemand, P.; Luo, L. S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability, Physical Review E, 61, 6546-6562 (2000)
[2] D. d’Humières, Generalized lattice-Boltzmann equations. Rarefied gas dynamics: theory and simulations, in: Proceedings of the 18th International Symposium on Rarefied Gas Dynamics, University of British Columbia, Vancouver, Canada, United States, vol. 159, 26-30 July 1992, pp. 450-458.; D. d’Humières, Generalized lattice-Boltzmann equations. Rarefied gas dynamics: theory and simulations, in: Proceedings of the 18th International Symposium on Rarefied Gas Dynamics, University of British Columbia, Vancouver, Canada, United States, vol. 159, 26-30 July 1992, pp. 450-458.
[3] Filippova, O.; Hanel, D., Grid refinement for lattice-BGK models, Journal of Computational Physics, 147, 1, 219-228 (1998) · Zbl 0917.76061
[4] Mei, R.; Luo, L. S.; Shyy, W., An accurate curved boundary treatment in the lattice Boltzmann method, Journal of Computational Physics, 155, 307-330 (1999) · Zbl 0960.82028
[5] Guo, Z. L.; Zheng, C. G.; Shi, B. C., An extrapolation method for boundary conditions in lattice Boltzmann method, Physics of Fluids, 14, 6, 2007-2010 (2002) · Zbl 1185.76156
[6] Bouzidi, M.; Firdaouss, M.; Lallemand, P., Momentum transfer of a Boltzmann-lattice fluid with boundaries, Physics of Fluids, 13, 11, 3452-3459 (2001) · Zbl 1184.76068
[7] Lallemand, P.; Luo, L. S., Lattice Boltzmann method for moving boundaries, Journal of Computational Physics, 184, 2, 406-421 (2003) · Zbl 1062.76555
[8] D. Yu, R. Mei, W. Shyy, A unified boundary treatment in lattice Boltzmann method, AIAA-2003-953.; D. Yu, R. Mei, W. Shyy, A unified boundary treatment in lattice Boltzmann method, AIAA-2003-953.
[9] Teixeira, C. M., Incorporating turbulence models into the lattice-Boltzmann method, International Journal of Modern Physics C, 9, 8, 1159-1175 (1998)
[10] Filippova, O.; Succi, S.; Mazzocco, F., Multiscale lattice Boltzmann schemes with turbulence modeling, Journal of Computational Physics, 170, 2, 812-829 (2001) · Zbl 1012.76073
[11] T. Imamura, K. Suzuki, T. Nakamura, et al. Flow simulation around an airfoil using lattice Boltzmann method on generalized coordinates, AIAA-2004-244.; T. Imamura, K. Suzuki, T. Nakamura, et al. Flow simulation around an airfoil using lattice Boltzmann method on generalized coordinates, AIAA-2004-244.
[12] Shu, C.; Peng, Y.; Zhou, C. F., Application of Taylor series expansion and least-squares-based lattice Boltzmann method to simulate turbulent flows, Journal of Turbulence, 7, 38, 1-12 (2006) · Zbl 1273.76342
[13] Yu, H.; Luo, L. S.; Girimaji, S. S., LES of turbulent square jet flow using an MRT lattice Boltzmann model, Computers & Fluids, 35, 8-9, 957-965 (2006) · Zbl 1177.76168
[14] Weickert, M.; Teike, G.; Schmidt, O., Investigation of the LES WALE turbulence model within the lattice Boltzmann framework, Computers & Mathematics with Applications, 59, 7, 2200-2214 (2010) · Zbl 1193.76118
[15] Shock, R. A.; Mallick, S.; Chen, H., Recent results on two-dimensional airfoils using a lattice Boltzmann-based algorithm, Journal of Aircraft, 39, 3, 434-439 (2002)
[16] Zhou, Y.; Zhang, R.; Staroselsky, I., Numerical simulation of laminar and turbulent buoyancy-driven flows using a lattice Boltzmann based algorithm, International Journal of Heat and Mass Transfer, 47, 22, 4869-4879 (2004) · Zbl 1112.76440
[17] Y. Li, R. Shock, R. Zhang, et al. Simulation of turbulent flow in a cyclonic separator with lattice Boltzmann method, AIAA-2006-3903.; Y. Li, R. Shock, R. Zhang, et al. Simulation of turbulent flow in a cyclonic separator with lattice Boltzmann method, AIAA-2006-3903.
[18] R. Satti, Y. Li, R. Shock, et al. Simulation of flow over a 3-element airfoil using a lattice-Boltzmann method, AIAA-2008-549.; R. Satti, Y. Li, R. Shock, et al. Simulation of flow over a 3-element airfoil using a lattice-Boltzmann method, AIAA-2008-549.
[19] A. Keating, J. Beedy, R. Shock, Lattice Boltzmann simulations of the DLR-F4, DLR-F6 and variants, AIAA-2008-749.; A. Keating, J. Beedy, R. Shock, Lattice Boltzmann simulations of the DLR-F4, DLR-F6 and variants, AIAA-2008-749.
[20] Zhuo, C. S.; Zhong, C. W.; Li, K., Application of lattice Boltzmann method to simulation of compressible turbulent flow, Communications in Computational Physics, 8, 5, 1208-1223 (2010) · Zbl 1364.76196
[21] Xiong, S. W.; Zhong, C. W.; Zhuo, C. S., Numerical simulation of compressible turbulent flow via improved gas-kinetic BGK scheme, International Journal for Numerical Methods in Fluids, 67, 12, 1833-1847 (2011) · Zbl 1426.76491
[22] Alpesh Patel, Development of an adaptive RANS solver for unstructured hexahedral meshes, Ph.D. Thesis, Université Libre de Bruelles Faculté des Sciences Appliquées, March 2003.; Alpesh Patel, Development of an adaptive RANS solver for unstructured hexahedral meshes, Ph.D. Thesis, Université Libre de Bruelles Faculté des Sciences Appliquées, March 2003.
[23] Lockard, D. P.; Luo, L.; Milder, S. D., Evaluation of PowerFLOW for aerodynamic applications, Journal of Statistical Physics, 107, 1-2, 423-478 (2002) · Zbl 1126.76355
[24] Breuer, M.; Jovièiæ, N.; Mazaev, K., Comparison of DES RANS and LES for the separated flow around a flat plate at high incidence, International Journal for Numerical Methods in Fluids, 41, 4, 357-388 (2003) · Zbl 1025.76013
[25] Chai, Z. H.; Shi, B. C.; Zheng, L., Simulating high Reynolds number flow in two-dimensional lid-driven cavity by multi-relaxation-time lattice Boltzmann method, Chinese Physics, 15, 8, 1855-1863 (2006)
[26] P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA-92-0439.; P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA-92-0439.
[27] Deck, S.; Duveau, P.; d’Espiney, P., Development and application of Spalart Allmaras one equation turbulence model to three dimensional supersonic complex configurations, Aerospace Science and Technology, 6, 3, 171-183 (2002) · Zbl 1006.76521
[28] CFL3D(Version 5.0), User’s manual files: turbulence model equations. http://cfl3d.larc.nasa.gov/; CFL3D(Version 5.0), User’s manual files: turbulence model equations. http://cfl3d.larc.nasa.gov/
[29] Imamura, T.; Suzuki, K.; Nakamura, T., Acceleration of steady-state lattice Boltzmann simulations on non-uniform mesh using local time step method, Journal of Computational Physics, 202, 2, 645-663 (2005) · Zbl 1076.82032
[30] Li, W.; Wei, X. M.; Kaufman, A., Implementing lattice Boltzmann computation on graphics hardware, The Visual Computer, 19, 7-8, 444-456 (2003)
[31] Tölke, Jonas, Implementation of a lattice Boltzmann kernel using the compute unified device architecture developed by nVIDIA, Computing and Visualization in Science, 13, 1, 29-39 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.