zbMATH — the first resource for mathematics

Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. (English) Zbl 1247.65131
An extension of higher order finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle to triangular meshes is presented. Such an extension is highly nontrivial. In order to obtain a maximum principle satisfying the finite volume schemes or the discontinuous Galerkin method, a special quadrature rule is constructed. The same method can preserve the maximum principle for DG or finite volume schemes solving two-dimensional incompressible Euler equations in the vorticity stream-function formulation. Also the positivity preserving high order DG or finite volume schemes solving compressible Euler equations on triangular meshes are obtained. Numerical tests for the third order Runge-Kutta DG method on unstructured meshes are reported.

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
76N15 Gas dynamics, general
76D05 Navier-Stokes equations for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
35B50 Maximum principles in context of PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Chang, S., Chang, K.: On the shock-vortex interaction in Schardin’s problem. Shock Waves 10, 333–343 (2000) · Zbl 0982.76506 · doi:10.1007/s001930000061
[2] Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989) · Zbl 0662.65083
[3] Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998) · Zbl 0920.65059 · doi:10.1006/jcph.1998.5892
[4] Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000) · Zbl 0940.35002
[5] Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009) · Zbl 1203.65135 · doi:10.1007/s10915-008-9239-z
[6] Ha, Y., Gardner, C., Gelb, A., Shu, C.-W.: Numerical simulation of high Mach number astrophysical jets with radiative cooling. J. Sci. Comput. 24, 597–612 (2005) · Zbl 1076.76055 · doi:10.1007/s10915-004-4786-4
[7] Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987) · Zbl 0652.65067 · doi:10.1016/0021-9991(87)90031-3
[8] Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[9] Korobeinikov, V.P.: Problems of Point-Blast Theory. American Institute of Physics, New York (1991)
[10] Liu, J.-G., Shu, C.-W.: A high-order discontinuous Galerkin method for 2D incompressible flows. J. Comput. Phys. 160, 577–596 (2000) · Zbl 0963.76069 · doi:10.1006/jcph.2000.6475
[11] Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994) · Zbl 0811.65076 · doi:10.1006/jcph.1994.1187
[12] Liu, W., Cheng, J., Shu, C.-W.: High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228, 8872–8891 (2009) · Zbl 1287.76181 · doi:10.1016/j.jcp.2009.09.001
[13] Niceno, B.: EasyMesh Version 1.4: a two-dimensional quality mesh generator (2001). Available from: http://www-dinma.univ.trieste.it/nirftc/research/easymesh/
[14] Perthame, B., Shu, C.-W.: On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73, 119–130 (1996) · Zbl 0857.76062 · doi:10.1007/s002110050187
[15] Sambasivan, S.K., UdayKumar, H.S.: Ghost fluid method for strong shock interactions part 2: immersed solid boundaries. AIAA J. 47, 2923–2937 (2009) · doi:10.2514/1.43153
[16] Schardin, H.: High frequency cinematography in the shock tube. J. Photosci. 5, 19–26 (1957)
[17] Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959) · Zbl 0121.18504
[18] Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988) · Zbl 0662.65081 · doi:10.1137/0909073
[19] Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[20] Skews, B.W.: The perturbed region behind a diffracting shock wave. J. Fluid Mech. 29, 705–719 (1967) · doi:10.1017/S0022112067001132
[21] Sun, M., Takayama, K.: The formation of a secondary shock wave behind a shock wave diffracting at a convex corner. Shock Waves 7, 287–295 (1997) · Zbl 0900.76242 · doi:10.1007/s001930050083
[22] Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010) · Zbl 1187.65096 · doi:10.1016/j.jcp.2009.12.030
[23] Zhang, X., Shu, C.-W.: On positivity preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010) · Zbl 1282.76128 · doi:10.1016/j.jcp.2010.08.016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.