×

zbMATH — the first resource for mathematics

\(L^p\)-solutions of backward doubly stochastic differential equations. (English) Zbl 1247.60098

MSC:
60H20 Stochastic integral equations
60H05 Stochastic integrals
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aman A., Afr. Diaspora J. Math. 8 pp 68–
[2] Aman A., Random Oper. Stoch. Equ. 17 pp 201–
[3] Aman A., Probab. Math. Statist. 30 pp 259–
[4] DOI: 10.3150/07-BEJ5092 · Zbl 1135.60038 · doi:10.3150/07-BEJ5092
[5] DOI: 10.1155/S1048953300000216 · Zbl 0979.60046 · doi:10.1155/S1048953300000216
[6] DOI: 10.1016/S0304-4149(03)00089-9 · Zbl 1075.65503 · doi:10.1016/S0304-4149(03)00089-9
[7] Kunita H., Stochastic Flows and Stochastic Differential Equations (1990) · Zbl 0743.60052
[8] DOI: 10.1007/BF00353876 · Zbl 0629.60061 · doi:10.1007/BF00353876
[9] N’zi M., Statist. Probab. Lett.
[10] N’zi M., Random Oper. Stoch. Equations 16 pp 307–
[11] DOI: 10.1007/978-94-011-4560-2_9 · doi:10.1007/978-94-011-4560-2_9
[12] DOI: 10.1007/BF01192514 · Zbl 0792.60050 · doi:10.1007/BF01192514
[13] DOI: 10.1016/S1631-073X(03)00183-3 · Zbl 1031.60055 · doi:10.1016/S1631-073X(03)00183-3
[14] Shi Y., Stoch. Anal. Appl. 23 pp 1–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.