×

zbMATH — the first resource for mathematics

Relativistic viscous hydrodynamics, conformal invariance, and holography. (English) Zbl 1246.81352
Summary: We consider second-order viscous hydrodynamics in conformal field theories at finite temperature. We show that conformal invariance imposes powerful constraints on the form of the second-order corrections. By matching to the AdS/CFT calculations of correlators, and to recent results for Bjorken flow obtained by Heller and Janik, we find three (out of five) second-order transport coefficients in the strongly coupled \(\mathcal N = 4\) supersymmetric Yang-Mills theory. We also discuss how these new coefficents can arise within the kinetic theory of weakly coupled conformal plasmas. We point out that the Müller-Israel-Stewart theory, often used in numerical simulations, does not contain all allowed second-order terms and, frequently, terms required by conformal invariance.

MSC:
81T60 Supersymmetric field theories in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[2] doi:10.1016/0003-4916(63)90078-2 · Zbl 0131.45002
[4] doi:10.1103/PhysRevD.68.025007
[5] doi:10.1103/RevModPhys.49.435
[6] doi:10.1112/plms/s2-40.1.382 · Zbl 0013.04405
[7] doi:10.1007/BF01326412
[8] doi:10.1016/0003-4916(76)90064-6
[10] doi:10.1016/0003-4916(79)90130-1
[11] doi:10.1063/1.1703727 · Zbl 0098.43503
[13] doi:10.1063/1.1703883 · Zbl 0126.24401
[14] doi:10.1063/1.1703879
[17] doi:10.1016/S0370-1573(99)00083-6 · Zbl 1368.81009
[19] doi:10.1103/PhysRevD.27.140
[20] doi:10.1103/PhysRevD.76.025027 · Zbl 1222.81269
[21] doi:10.1103/PhysRevD.77.046006
[22] doi:10.1103/PhysRevC.73.064903
[23] doi:10.1103/PhysRevLett.88.062302
[24] doi:10.1016/S0370-2693(98)00377-3 · Zbl 1355.81126
[31] doi:10.1103/PhysRevD.54.3915
[32] doi:10.1103/PhysRevLett.87.081601
[34] doi:10.1103/PhysRevD.72.086009
[35] doi:10.1016/0550-3213(82)90035-9
[37] doi:10.1016/0550-3213(94)00582-Y
[39] doi:10.1016/0003-4916(86)90164-8
[40] doi:10.1002/cpa.3160020403 · Zbl 0037.13104
[45] doi:10.1016/S0370-1573(01)00061-8 · Zbl 0983.81529
[47] doi:10.1016/0003-4916(83)90288-9 · Zbl 0536.76126
[48] doi:10.1063/1.530958 · Zbl 0842.76099
[50] doi:10.1103/PhysRevD.62.023003
[51] doi:10.1103/PhysRevD.64.088504
[53] doi:10.1098/rspa.1977.0155
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.