×

zbMATH — the first resource for mathematics

Full one-loop amplitudes from tree amplitudes. (English) Zbl 1246.81170
Summary: We establish an efficient polynomial-complexity algorithm for one-loop calculations, based on generalized \(D\)-dimensional unitarity. It allows automated computations of both cut-constructible and rational parts of one-loop scattering amplitudes from on-shell tree amplitudes. We illustrate the method by (re)-computing all four-, five- and six-gluon scattering amplitudes in QCD at one-loop.

MSC:
81T18 Feynman diagrams
81V05 Strong interaction, including quantum chromodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[2] doi:10.1016/0010-4655(94)90084-1
[3] doi:10.1016/S0010-4655(00)00151-X · Zbl 1031.81507
[7] doi:10.1016/0550-3213(88)90442-7
[8] doi:10.1016/0370-2693(95)00971-M
[9] doi:10.1016/S0370-2693(98)01015-6
[10] doi:10.1016/j.nuclphysb.2005.02.030 · Zbl 1207.81088
[11] doi:10.1103/PhysRevLett.94.181602
[14] doi:10.1016/j.physletb.2005.03.007
[15] doi:10.1016/j.nuclphysb.2005.06.033 · Zbl 05143785
[17] doi:10.1063/1.1703676 · Zbl 0122.22605
[19] doi:10.1016/0550-3213(86)90165-3
[20] doi:10.1016/0550-3213(94)90179-1 · Zbl 1049.81644
[21] doi:10.1016/0550-3213(94)00488-Z
[22] doi:10.1016/0550-3213(96)00078-8
[23] doi:10.1016/S0370-2693(96)01676-0
[24] doi:10.1016/S0550-3213(97)00703-7
[25] doi:10.1016/j.nuclphysb.2005.07.014 · Zbl 1178.81202
[26] doi:10.1016/j.nuclphysb.2006.11.012 · Zbl 1116.81067
[30] doi:10.1103/PhysRevD.75.125019
[32] doi:10.1016/j.nuclphysb.2006.09.006 · Zbl 1116.81353
[34] doi:10.1103/PhysRevD.73.065013
[35] doi:10.1103/PhysRevD.75.016006
[36] doi:10.1016/j.physletb.2006.12.022
[39] doi:10.1016/0550-3213(72)90279-9
[41] doi:10.1103/PhysRevD.66.085002
[45] doi:10.1016/0550-3213(87)90604-3
[46] doi:10.1016/0550-3213(88)90001-6
[47] doi:10.1016/0550-3213(91)90567-H
[48] doi:10.1103/PhysRevLett.70.2677
[49] doi:10.1016/0550-3213(94)90456-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.