×

zbMATH — the first resource for mathematics

Turbulent-laminar coexistence in wall flows with Coriolis, buoyancy or Lorentz forces. (English) Zbl 1246.76028
Summary: Direct numerical simulations of subcritical rotating, stratified and magneto-hydrodynamic wall-bounded flows are performed in large computational domains, focusing on parameters where laminar and turbulent flow can stably coexist. In most cases, a regime of large-scale oblique laminar-turbulent patterns is identified at the onset of transition, as in the case of pure shear flows. The current study indicates that this oblique regime can be shifted up to large values of the Reynolds number by increasing the damping by the Coriolis, buoyancy or Lorentz force. We show evidence for this phenomenon in three distinct flow cases: plane Couette flow with spanwise cyclonic rotation, plane magnetohydrodynamic channel flow with a spanwise or wall-normal magnetic field, and open channel flow under stable stratification. Near-wall turbulence structures inside the turbulent patterns are invariably found to scale in terms of viscous wall units as in the fully turbulent case, while the patterns themselves remain large-scale with a trend towards shorter wavelength for increasing \(Re\). Two distinct regimes are identified: at low Reynolds numbers the patterns extend from one wall to the other, while at large Reynolds number they are confined to the near-wall regions and the patterns on both channel sides are uncorrelated, the core of the flow being highly turbulent without any dominant large-scale structure.

MSC:
76F06 Transition to turbulence
76U05 General theory of rotating fluids
76F45 Stratification effects in turbulence
76W05 Magnetohydrodynamics and electrohydrodynamics
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1023/A:1001765727956 · doi:10.1023/A:1001765727956
[2] DOI: 10.1017/S0022112006003673 · Zbl 1111.76063 · doi:10.1017/S0022112006003673
[3] DOI: 10.1016/j.ijheatfluidflow.2009.06.007 · doi:10.1016/j.ijheatfluidflow.2009.06.007
[4] DOI: 10.1017/S0022112076001171 · Zbl 0339.76033 · doi:10.1017/S0022112076001171
[5] DOI: 10.1063/1.858149 · doi:10.1063/1.858149
[6] DOI: 10.1017/S0022112001004621 · Zbl 1008.76100 · doi:10.1017/S0022112001004621
[7] DOI: 10.1063/1.2975988 · Zbl 1182.76401 · doi:10.1063/1.2975988
[8] DOI: 10.1017/S002211200700924X · Zbl 1131.76027 · doi:10.1017/S002211200700924X
[9] DOI: 10.1017/S0022112083000944 · doi:10.1017/S0022112083000944
[10] DOI: 10.1017/S0022112096007537 · Zbl 0875.76160 · doi:10.1017/S0022112096007537
[11] DOI: 10.1017/S0022112065000241 · Zbl 0134.21705 · doi:10.1017/S0022112065000241
[12] DOI: 10.1017/S0022112003005305 · Zbl 1063.76580 · doi:10.1017/S0022112003005305
[13] DOI: 10.1103/PhysRevLett.89.014501 · doi:10.1103/PhysRevLett.89.014501
[14] DOI: 10.1016/S0167-2789(02)00685-1 · Zbl 1036.76023 · doi:10.1016/S0167-2789(02)00685-1
[15] DOI: 10.1103/PhysRevE.83.036308 · doi:10.1103/PhysRevE.83.036308
[16] DOI: 10.1063/1.869966 · Zbl 1147.76463 · doi:10.1063/1.869966
[17] DOI: 10.1017/S0022112061000305 · Zbl 0101.43002 · doi:10.1017/S0022112061000305
[18] DOI: 10.1103/PhysRevE.80.046315 · doi:10.1103/PhysRevE.80.046315
[19] Hashimoto, Proceedings of the Sixth International Symposium on Turbulence, Heat and Mass Transfer pp 193– (2009)
[20] DOI: 10.1063/1.3560359 · Zbl 06422353 · doi:10.1063/1.3560359
[21] DOI: 10.1017/S0022112073001576 · doi:10.1017/S0022112073001576
[22] DOI: 10.1017/S0022112068002326 · Zbl 0155.55702 · doi:10.1017/S0022112068002326
[23] DOI: 10.1017/S0022112066000211 · doi:10.1017/S0022112066000211
[24] DOI: 10.1017/S0022112009993880 · Zbl 1189.76047 · doi:10.1017/S0022112009993880
[25] DOI: 10.1098/rstl.1883.0029 · JFM 16.0845.02 · doi:10.1098/rstl.1883.0029
[26] Fukudome, Proceedings of 6th International Symposium on Turbulence and Shear Flow Phenomena pp 471– (2009)
[27] DOI: 10.1103/PhysRevLett.101.244501 · doi:10.1103/PhysRevLett.101.244501
[28] DOI: 10.1007/s10546-011-9588-2 · doi:10.1007/s10546-011-9588-2
[29] Tsukahara, Proceedings of the 4th Intl Symposium on Turbulence and Shear Flow Phenomena pp 935– (2005)
[30] DOI: 10.1017/S002211200600454X · Zbl 1124.76018 · doi:10.1017/S002211200600454X
[31] Emmons, J. Aerosp. Sci. 18 pp 490– (1951)
[32] DOI: 10.1063/1.3580263 · Zbl 1308.76135 · doi:10.1063/1.3580263
[33] DOI: 10.1103/PhysRevLett.94.014502 · doi:10.1103/PhysRevLett.94.014502
[34] DOI: 10.1017/S0022112010000297 · Zbl 1189.76254 · doi:10.1017/S0022112010000297
[35] DOI: 10.1016/0169-5983(95)00038-0 · Zbl 1051.76562 · doi:10.1016/0169-5983(95)00038-0
[36] DOI: 10.1017/S0022112002007851 · Zbl 1022.76027 · doi:10.1017/S0022112002007851
[37] Drazin, Hydrodynamic and Hydromagnetic Stability (1981)
[38] DOI: 10.1063/1.3139294 · Zbl 1183.76457 · doi:10.1063/1.3139294
[39] DOI: 10.1017/S0022112086002513 · doi:10.1017/S0022112086002513
[40] DOI: 10.1017/S002211201000460X · Zbl 1225.76172 · doi:10.1017/S002211201000460X
[41] DOI: 10.1007/BF01078886 · Zbl 0287.76037 · doi:10.1007/BF01078886
[42] DOI: 10.1017/S0022112009991029 · Zbl 1183.76761 · doi:10.1017/S0022112009991029
[43] DOI: 10.1103/PhysRevE.80.067301 · doi:10.1103/PhysRevE.80.067301
[44] DOI: 10.1007/s10955-011-0126-x · Zbl 1213.76095 · doi:10.1007/s10955-011-0126-x
[45] DOI: 10.1063/1.1570830 · Zbl 1186.76136 · doi:10.1063/1.1570830
[46] DOI: 10.1115/1.3448633 · doi:10.1115/1.3448633
[47] Robertson, ASCE J. Engng Mech. Div. 96 pp 1171– (1970)
[48] DOI: 10.1103/PhysRevE.55.2736 · doi:10.1103/PhysRevE.55.2736
[49] DOI: 10.1063/1.870068 · Zbl 1147.76446 · doi:10.1063/1.870068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.