zbMATH — the first resource for mathematics

Topology optimization of heat conduction problems using the finite volume method. (English) Zbl 1245.80011
Summary: We address the use of the finite volume method (FVM) for topology optimization of a heat conduction problem. Issues pertaining to the proper choice of cost functions, sensitivity analysis, and example test problems are used to illustrate the effect of applying the FVM as an analysis tool for design optimization. This involves an application of the FVM to problems with nonhomogeneous material distributions, and the arithmetic and harmonic averages are here used to provide a unique value for the conductivity at element boundaries. It is observed that when using the harmonic average, checkerboards do not form during the topology optimization process.

80M50 Optimization problems in thermodynamics and heat transfer
80M12 Finite volume methods applied to problems in thermodynamics and heat transfer
74P10 Optimization of other properties in solid mechanics
49N90 Applications of optimal control and differential games
COMSOL; top.m
Full Text: DOI
[1] Barth T, Ohlberger M (2004) Finite volume methods: foundation and analysis. In: Stein E, Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 1. Wiley, West Sussex, England
[2] Bartholdi JJ III, Gue KR (2004) The best shape for a crossdock. Transp Sci 38(2):235–244. DOI:10.1287/trsc.1030.0077
[3] Bejan A (2000) Shape and structure, from engineering to nature. Cambridge University Press, Cambridge, UK · Zbl 0983.74002
[4] Bejan A, Ledezma GA (1998) Streets tree networks and urban growth: optimal geometry for quickest access between a finite-size volume and one point. Physica A 255(1–2):211–217. DOI:10.1016/S0378-4371(98)00085-5
[5] Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654. DOI:10.1007/s004190050248 · Zbl 0957.74037
[6] Bendsøe MP, Sigmund O (2004) Topology optimization–theory, methods, and applications. Springer, Berlin Heidelberg New York · Zbl 1059.74001
[7] Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Methods Fluids 41:77–107. DOI:10.1002/fld.426 · Zbl 1025.76007
[8] Craig KJ, de Kock DJ, Snyman JA (2001) Minimizing the effect of automotive pollution in urban geometry using mathematical optimization. Atmos Environ 35:579–587. DOI:10.1016/S1352-2310(00)00307-1
[9] Chalot FL (2004) Industrial aerodynamics. In: Stein E, Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 3. Wiley, West Sussex, England
[10] Choi KK, Kim N-H (2005) Structural sensitivity analysis and optimization, 1 and 2. Springer, Berlin Heidelberg New York
[11] Cockburn B, Karniadakis GE, Shu C-W (1999) Discontinuous Galerkin methods: theory, computation and applications. Springer, Berlin Heidelberg New York
[12] Diaz AR, Benard A (2003) Topology optimization of heat-resistant structures. Proc ASME Des Eng Tech Conf 2A:633–639
[13] Donoso A, Sigmund O (2004) Topology optimization of multiple physics probelms modelled by Poisson’s equation. Latin Am J Solid Struct 1:169–184
[14] Evgrafov A (2004) Topology optimization of slightly incompressible fluids. Ph.D. thesis: Approximation of topology optimization problems using sizing optimization problems, Department of Mathematics, Chalmers University of Technology, Göteborg, Sweden, pp 55–81. ISBN 91-7291-466-1
[15] Gersborg-Hansen A, Sigmund O, Haber RB (2005a) Topology optimization of channel flow problems. Struct Multidiscipl Optim 30(3):181–192. DOI:10.1007/s00158-004-0508-7 · Zbl 1243.76034
[16] Gersborg-Hansen A, Bendsøe MP, Sigmund O (2005b) Topology optimization using the finite volume method. In: Proceedings of the 6th world congress of structural and multidisciplinary optimization, Rio de Janeiro, 2005 · Zbl 1245.80011
[17] Guillaume P, Idris KS (2005) Topological sensitivity and shape optimization for the stokes equations. SIAM J Control Optim 43(1):1–31. DOI:10.1137/S0363012902411210 · Zbl 1093.49029
[18] Habbal A, Petersson J, Thellner M (2004) Multidisciplinary topology optimization solved as a Nash game. Int J Numer Methods Eng 61(7):949–963. DOI:10.1002/nme.1093 · Zbl 1075.74606
[19] Hashin Z (1983) Analysis of composite-materials–a survey. J Appl Mech 50(3):481–505 · Zbl 0542.73092
[20] Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33(10):3125–3131 · Zbl 0111.41401
[21] Hovedstadens Udviklingsråd (2003) Trafikplan 2003 (in Danish). Available at www.hur.dk. ISBN 87-7971-110-3
[22] Jenny P, Lee SH, Tchelepi HA (2004) Adaptive multiscale finite-volume method for multiphase flow and transport in porous media. Multiscale Model Simul 3(1):50–64. DOI:10.1137/030600795 · Zbl 1160.76372
[23] Jha MK, Schonfeld P (2004) A highway alignment optimization model using geographic information systems. Transp Res Part A 38:455–481. DOI:10.1016/j.tra.2004.04.001
[24] Jong JC, Schonfeld P (2003) An evolutionary model for simultaneously optimizing three-dimensional highway alignments. Transp Res Part B 37:107–128. DOI:10.1016/S0191-2615(01)00047-9
[25] Klarbring A, Petersson J, Torstenfelt B, Karlsson M (2003) Topology optimization of flow networks. Comput Methods Appl Mech Eng 192(35–36):3909–3932. DOI:10.1016/S0045-7825(03)00393-1 · Zbl 1054.76028
[26] Lesaint P, Raviart P-A (1974) On a finite element method for solving the neutron transport equation. In: de Boor C (ed) Mathematical aspects of finite elements in partial differential equations. Academic, New York · Zbl 0313.65103
[27] Li Q, Steven GP, Xie YM, Querin OM (2004) Evolutionary topology optimization for temperature reduction of heat conducting fields. Int J Heat Mass Transfer 47:5071–5083. DOI:10.1016/ j.ijheatmasstransfer.2004.06.010 · Zbl 1083.80008
[28] Mohammadi B, Pironneau O (2004) Shape optimization in fluid mechanics. Annu Rev Fluid Mech 36:255–279. DOI:10.1146/annurev.fluid.36.050802.121926 · Zbl 1076.76020
[29] Olesen LO, Okkels F, Bruus H (2005) A high-level programming–language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Numer Methods Eng. DOI:10.1002/nme.1468 · Zbl 1111.76017
[30] Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New York
[31] Pedersen NL (2004) On optimization of bio-probes. Int J Numer Methods Eng 61:791–806. DOI:10.1002/nme.1026 · Zbl 1075.74612
[32] Sigmund O (2001a) A 99 line topology optimization code written in MATLAB. Struct Multidiscipl Optim 21:120–127 (MATLAB code available online at: www.topopt.dtu.dk). DOI:10.1007/ s001580050176
[33] Sigmund O (2001b) Design of multiphysics actuators using topology optimization–Part I: one-material structures. Comput Methods Appl Mech Eng 190(49–50):6577–6604. DOI:10.1016/ S0045-7825(01)00251-1 · Zbl 1116.74407
[34] Sigmund O (2001c) Design of multiphysics actuators using topology optimization–Part II: two-material structures. Comput Mehtods Appl Mech Eng 190(49–50):6605–6627. DOI:10.1016/S0045-7825(01)00252-3 · Zbl 1116.74407
[35] Sigmund O, Gersborg-Hansen A, Haber RB (2003) Topology optimization for multiphysics problems: a future FEMLAB application? In: Gregersen L (ed) Nordic Matlab conference (held in Copenhagen). Comsol, Søborg, Denmark, pp 237–242
[36] Squire W, Trapp G (1998) Using complex variables to estimate derivatives of real functions. SIAM Rev 40(1):110–112. DOI:10.1137/S003614459631241X · Zbl 0913.65014
[37] Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscipl Optim 22(2):116–124. DOI:10.1007/s001580100129
[38] Svanberg K (1987) The method of moving asymptotes–a new method for structural optimization. Int J Numer Methods Eng 24:359–373 · Zbl 0602.73091
[39] Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573. DOI:10.1137/S1052623499362822 · Zbl 1035.90088
[40] Thellner M (2005) Topology optimization of convection–diffusion problems. Ph.D. thesis: Multi-parameter topology optimization in continuum mechanics. Linköping Studies in Science and Technology, Dissertations no. 934, pp 71–87. ISBN 91-85297-71-2
[41] Torquato S, Gibiansky LV et al (1998) Effective mechanical and transport properties of cellular solids. Int J Mech Sci 40(1):71–82. DOI:10.1016/S0020-7403(97)00031-3 · Zbl 0938.74057
[42] van Keulen F, Haftka RT, Kim NH (2005) Review of options for structural design sensitivity analysis. Part 1: linear systems. Comput Methods Appl Mech Eng 194(30–33):3213–3243. DOI:10.1016/j.cma.2005.02.002 · Zbl 1091.74040
[43] Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method. Longman Scientific & Technica, London
[44] Vos JB et al (2002) Navier–Stokes solvers in European aircraft design. Prog Aerosp Sci 38:601–697. DOI:10.1016/S0376-0421(02)00050-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.