zbMATH — the first resource for mathematics

On a nonautonomous SEIRS model in epidemiology. (English) Zbl 1245.34040
Summary: We derive some threshold conditions for permanence and extinction of diseases that can be described by a nonautonomous SEIRS epidemic model. Under the quite weak assumptions, we establish some sufficient conditions to prove the permanence and extinction of disease. Some new threshold values are determined.

34C11 Growth and boundedness of solutions to ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
92D30 Epidemiology
Full Text: DOI
[1] Anderson, R. M.; May, R. M., Regulation and stability of host-parasite population interactions II: destabilizing process, J. Anim. Ecol., 47, 219-267 (1978)
[2] Anderson, R. M.; May, R. M., Population biology of infectious diseases: Part I, Nature, 280, 361-367 (1979)
[3] Anderson, R. M.; May, R. M., Infectious Disease of Humans, Dynamical and Control (1992), Oxford: Oxford University Press, Oxford
[4] Brauer, F.; Castillo-Chavez, C., Mathematical Models in Population Biology and Epidemiology (2001), Berlin: Springer, Berlin · Zbl 0967.92015
[5] Capasso, V., Mathematical Structures of Epidemic Systems (1993), Berlin: Springer, Berlin · Zbl 0798.92024
[6] Cull, P., Global stability for population models, Bull. Math. Biol., 43, 47-58 (1981) · Zbl 0451.92011
[7] Diekmann, O.; Heesterbeek, J. A.P., Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation (2000), Chichester: Wiley, Chichester · Zbl 0997.92505
[8] Dowell, S. F., Seasonal variation in host susceptibility and cycles of certain infectious diseases, Emerg. Infect. Dis., 7, 369-374 (2001)
[9] Earn, D. J.D.; Dushoff, J.; Levin, S. A., Ecology and evolution of the flu, Trends Ecol. Evol., 17, 334-340 (2002)
[10] Herzog, G.; Redheffer, R., Nonautonomous SEIRS and Thron models for epidemiology and cell biology, Nonlinear Anal. RWA, 5, 33-44 (2004) · Zbl 1067.92053
[11] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 599-653 (2000) · Zbl 0993.92033
[12] Kermark, M. D.; Mckendrick, A. G., Contributions to the mathematical theory of epidemics: Part I, Proc. Roy. Soc., 115, 700-721 (1927) · JFM 53.0517.01
[13] Li, M. Y.; Graef, J. R.; Wang, L.; Karsai, J., Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160, 191-213 (1999) · Zbl 0974.92029
[14] Liu, W.; Hethcote, H. W.; Levin, S. A., Dynamical behavior of epidemiological models in epidemiology, J. Math. Biol., 25, 359-380 (1987) · Zbl 0621.92014
[15] London, W.; Yorke, J. A., Recurrent outbreaks of measles, chickenpox and mumps: I. seasonal variation in contact rates, Am. J. Epidemiol., 98, 453-468 (1973)
[16] Ma, Z.; Zhou, Y.; Wang, W.; Jin, Z., Mathematical Modelling and Research of Epidemic Dynamical Systems (2004), Beijing: Science, Beijing
[17] Mena-Lorca, J.; Hethcote, H. W., Dynamic models of infectious diseases as regulators of population sizes, J. Math. Biol., 30, 693-716 (1992) · Zbl 0748.92012
[18] Takeuchi, Y.; Cui, J.; Rinko, M.; Saito, Y., Permanence of delayed population model with dispersal loss, Math. Biosci., 201, 143-156 (2006) · Zbl 1093.92059
[19] Takeuchi, Y.; Cui, J.; Rinko, M.; Saito, Y., Permanence of dispersal population model with time delays, J. Comp. Appl. Math., 192, 417-430 (2006) · Zbl 1109.34059
[20] Teng, Z.; Chen, L., Permanence and extinction of periodic predator-prey systems in a patchy environment with delay, Nonlinear Anal. RWA, 4, 335-364 (2003) · Zbl 1018.92033
[21] Teng, Z.; Li, Z., Permanence and asymptotic behavior of the N-species nonautonomous Lotka-Volterra competitive systems, Comput. Math. Appl., 39, 107-116 (2000) · Zbl 0959.34039
[22] Teng, Z.; Yu, Y., The extinction in nonautonomous prey-predator Lotka-Volterra systems, Acta Math. Appl. Sin., 15, 401-408 (1999) · Zbl 1007.92031
[23] Thieme, H. R., Uniform weak implies uniform strong persistence also for non-autonomous semiflows, Proc. Am. Math. Soc., 127, 2395-2403 (1999) · Zbl 0918.34053
[24] Thieme, H. R., Uniform persistence and permanence for non-autonomous semiflows in population biology, Math. Biosci., 166, 173-201 (2000) · Zbl 0970.37061
[25] Thieme, H. R., Mathematics in Population Biology (2003), Princeton: Princeton University Press, Princeton · Zbl 1054.92042
[26] Zhang, J.; Lou, J.; Ma, Z.; Wu, J., A compartmental model for the analysis of SARS transmission patterns and outbreak control measures in China, Appl. Math. Comput., 162, 909-924 (2005) · Zbl 1057.92048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.