×

zbMATH — the first resource for mathematics

A new method for meshless integration in 2D and 3D Galerkin meshfree methods. (English) Zbl 1244.74222
Summary: A method for the evaluation of regular domain integrals without domain discretization is presented. In this method, a domain integral is transformed into a boundary integral and a 1D integral. The method is then utilized for the evaluation of domain integrals in meshless methods based on the weak form, such as the element-free Galerkin method and the meshless radial point interpolation method. The proposed technique results in truly meshless methods with better accuracy and efficiency in comparison with their original forms. Some examples, including linear and large-deformation problems, are also provided to demonstrate the usefulness of the proposed method.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
Software:
Mfree2D
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Belytschko, T.; Lu, Y.Y.; Gu, L., Element-free Galerkin methods, Int J numer methods eng, 37, 229-256, (1994) · Zbl 0796.73077
[2] Belytschko, T.; Gu, L.; Lu, Y.Y., Fracture and crack growth by element-free Galerkin methods, Model simulation mater sci eng, 2, 519-534, (1994)
[3] Belytschko, T.; Lu, Y.Y.; Gu, L., Crack propagation by element-free Galerkin methods, Eng fract mech, 1, 295-315, (1995)
[4] Belytschko, T.; Tabbara, M., Dynamic fracture using element-free Galerkin methods, Int J numer methods eng, 39, 923-938, (1996) · Zbl 0953.74077
[5] Belytschko, T.; Organ, D.; Gerlach, C., Element-free Galerkin methods for dynamic fracture in concrete, Comput methods appl mech eng, 187, 385-399, (2000) · Zbl 0962.74077
[6] Krysl, P.; Belytschko, T., The element free Galerkin method for dynamic propagation of arbitrary 3-D cracks, Int J numer methods eng, 44, 767-800, (1999) · Zbl 0953.74078
[7] Ventura, G.; Xu, J.X.; Belytschko, T., A vector level set method and new discontinuity approximation for crack growth by EFG, Int J numer methods eng, 54, 923-944, (2002) · Zbl 1034.74053
[8] Li, G.; Belytschko, T., Element-free Galerkin method for contact problems in metal forming analysis, Eng comput, 18, 62-78, (2001) · Zbl 0985.74080
[9] Ponthot, J.P.; Belytschko, T., Arbitrary lagrangian – eulerian formulation for element-free Galerkin method, Comput methods appl mech eng, 152, 19-46, (1998) · Zbl 0961.74079
[10] Bobaru, S.; Mukherjee, S., Shape sensitivity analysis and shape optimization in planar elasticity using the element-free Galerkin method, Comput methods appl mech eng, 190, 4319-4337, (2001) · Zbl 1048.74051
[11] Bobaru, S.; Mukherjee, S., Meshless approach to shape optimization of linear thermoelastic solids, Int J numer methods eng, 53, 765-796, (2002)
[12] Singh, I.V.; Sandeep, K.; Parkash, R., Heat transfer analysis of two dimensional fins using meshless element free Galerkin method, Numer heat transfer A app, 44, 73-84, (2003)
[13] Singh, I.V., Meshless EFG method in three-dimensional heat transfer problems: a numerical comparison, cost and error analysis, Numeri heat transfer A app, 45, 199-220, (2004)
[14] Singh, I.V., Parallel implementation of the EFG method for heat transfer and fluid flow problems, Comput mech, 34, 453-463, (2004) · Zbl 1109.76353
[15] Singh, I.V.; Tanaka, M., Heat transfer analysis of composite slabs using meshless element free Galerkin method, Comput mech, 38, 521-532, (2006) · Zbl 1168.80309
[16] Singh, I.V.; Tanaka, M.; Endo, M., Thermal analysis of CNT-based nano-composites by element free Galerkin method, Comput mech, 39, 719-728, (2007) · Zbl 1163.74015
[17] Krysl, P.; Belytschko, T., Analysis of thin plates by the element-free Galerkin method, Comput mech, 17, 26-35, (1995) · Zbl 0841.73064
[18] Dai, K.Y.; Liu, G.R.; Han, X.; Lim, K.M., Thermomechanical analysis of functionally graded material (FGM) plates using element-free Galerkin method, Comput struct, 83, 1487-1502, (2005)
[19] Liu, G.R.; Gu, Y.T., A point interpolation method for two-dimensional solids, Int J numer methods eng, 50, 4, 937-951, (2001) · Zbl 1050.74057
[20] Liu, G.R.; Gu, Y.T., Local point interpolation method for stress analysis of two-dimensional solids, Struct eng mech, 11, 2, 221-236, (2001)
[21] Gu, Y.T.; Liu, G.R., A local point interpolation method for static and dynamic analysis of thin beams, Comput methods appl mech eng, 190, 42, 5515-5528, (2001) · Zbl 1059.74060
[22] Liu, G.R.; Dai, K.Y.; Lim, K.M.; Gu, Y.T., A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures, Comput mech, 29, 6, 510-519, (2002) · Zbl 1146.74371
[23] Dai, K.Y.; Liu, G.R.; Lim, K.M.; Han, X.; Du, S.Y., A meshfree radial point interpolation method for analysis of functionally graded material (FGM) plates, Comput mech, 34, 3, 213-223, (2004) · Zbl 1138.74417
[24] Hu, W.; Guang Yao, L.; Zhi Hua, Z., Parallel point interpolation method for three-dimensional metal forming simulations, Eng anal bound elem, 31, 4, 326-342, (2007) · Zbl 1195.74285
[25] Rosca, V.E.; Leitao, V.M.A., Quasi-Monte Carlo mesh-free integration for meshless weak formulations, Eng anal bound elem, 32, 471-479, (2008) · Zbl 1244.74229
[26] Dolbow, J.; Belytschko, T., Numerical integration of the Galerkin weak form in meshfree methods, Comput mech, 23, 219-230, (1999) · Zbl 0963.74076
[27] Liu, G.R.; Yan, L., A study on numerical integrations in element free methods, Proc APCOM 99 Singapore, 979-984, (1999)
[28] Liu, G.R., Mesh free methods: moving beyond the finite element method, (2003), CRC Press Boca Raton · Zbl 1031.74001
[29] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput methods appl mech eng, 139, 49-74, (1996) · Zbl 0918.73329
[30] Chen, J.S.; Wu, C.T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int J numer methods eng, 50, 435-466, (2001) · Zbl 1011.74081
[31] Chen, J.S.; Yoon, S.; Wu, C.T., Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods, Int J numer methods eng, 53, 2587-2615, (2002) · Zbl 1098.74732
[32] Hematiyan, M.R., A general method for evaluation of 2D and 3D domain integrals without domain discretization and its application in BEM, Comput mech, 39, 509-520, (2007) · Zbl 1160.74049
[33] Hematiyan, M.R., Exact transformation of a wide variety of domain integrals into boundary integrals in boundary element method, Commun numer methods eng, 24, 11, 1497-1521, (2008) · Zbl 1156.65099
[34] Lai, W.M.; Rubin, D.; Krempl, E., Introduction to continuum mechanics, (1999), Butterworth Heinemann USA
[35] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math comput, 37, 141-158, (1981) · Zbl 0469.41005
[36] Liu, G.R.; Gu, Y.T., A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids, J sound vib, 246, 1, 29-46, (2001)
[37] Chung, T.J., Continuum mechanics, (1988), Prentice Hall Englewood Cliffs · Zbl 0712.73001
[38] Dolbow, J.; Belytschko, T., An introduction to programming the meshless element free Galerkin method, Arch comput methods eng, 5, 3, 207-241, (1998)
[39] Liu, G.R.; Gu, Y.T., An introduction to meshfree methods and their programming, (2005), Springer Berlin Heidelberg New York
[40] Belytschko, T.; Liu, W.K.; Moran, B., Nonlinear finite elements for continua and structures, (2003), Wiley NewYork
[41] Hill, R., The mathematical theory of plasticity, (1998), Oxford University Press USA · Zbl 0923.73001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.