×

A fast simulation method for 1D heat conduction. (English) Zbl 1244.65144

Summary: A flexible solution method for the initial-boundary value problem of the temperature field in a one-dimensional domain of a solid with significantly nonlinear material parameters and radiation boundary conditions is proposed. A transformation of the temperature values allows the isolation of the nonlinear material characteristics into a single coefficient of the heat conduction equation. The Galerkin method is utilized for spatial discretization of the problem and integration of the time domain is done by constraining the boundary heat fluxes to piecewise linear, discontinuous signals. The radiative heat exchange is computed with the help of the Stefan-Boltzmann law, such that the ambient temperatures serve as system inputs. The feasibility and accuracy of the proposed method are demonstrated by means of an example of heat treatment of a steel slab, where numerical results are compared to the finite difference method.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
80A20 Heat and mass transfer, heat flow (MSC2010)
80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer

Software:

Ode15s; Simulink
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baehr, H. D.; Stephan, K., Heat and Mass Transfer (2006), Springer-Verlag: Springer-Verlag Berlin Heidelberg
[2] Balbis, L.; Balderud, J.; Grimble, M. J., Nonlinear predictive control of steel slab reheating furnace, (Proceedings of the American Control Conference. Proceedings of the American Control Conference, Seattle, Washington, USA (2008)), 1679-1684
[3] Berinde, V., Iterative Approximation of Fixed Points, vol. 1912 of Lecture Notes in Mathematics (2007), Springer: Springer Berlin
[4] BISRA, Physical constants of some commercial steels at elevated temperatures, Tech. Rep., British Iron & Steel Research Association, London, 1953.; BISRA, Physical constants of some commercial steels at elevated temperatures, Tech. Rep., British Iron & Steel Research Association, London, 1953.
[5] Crank, J.; Nicholson, P., A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type, Proc. Cambridge Philos. Soc., 43, 50-67 (1947) · Zbl 0029.05901
[6] Ditzhuijzen, G.v.; Staalman, D.; Koorn, A., Identification and model predictive control of a slab reheating furnace, (Proceedings of the 2002 IEEE International Conference on Control Applications. Proceedings of the 2002 IEEE International Conference on Control Applications, Glasgow, UK (2002)), 361-366
[7] Evans, L. C., Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics (2002), American Mathematical Society: American Mathematical Society Providence, Rhode Island
[8] Fletcher, C., Computational Galerkin Methods (1984), Springer: Springer New York · Zbl 0533.65069
[9] Franklin, G. F.; Powell, J. D.; Workman, M., Digital Control of Dynamic Systems (1997), Prentice Hall: Prentice Hall Upper Saddle River
[10] K. Harste, Untersuchung zur Schrumpfung und zur Entstehung von mechanischen Spannungen während der Erstarrung und nachfolgender Abkühlung zylindrischer Blöcke aus Fe-C-Legierungen, Ph.D. thesis, Technische Universität Clausthal, 1989.; K. Harste, Untersuchung zur Schrumpfung und zur Entstehung von mechanischen Spannungen während der Erstarrung und nachfolgender Abkühlung zylindrischer Blöcke aus Fe-C-Legierungen, Ph.D. thesis, Technische Universität Clausthal, 1989.
[11] Hottel, H. C.; Sarofim, A. F., Radiative Transfer (1967), McGraw-Hill: McGraw-Hill New York
[12] Lienhard, J. H.; Lienhard, J. H., A Heat Transfer Textbook (2002), Phlogiston Press: Phlogiston Press Cambridge, Massachusetts · Zbl 0154.19402
[13] Modest, M. F., Radiative Heat Transfer (2003), Academic Press: Academic Press New York
[14] Ogata, K., Discrete-Time Control Systems (1995), Prentice Hall: Prentice Hall Upper Saddle River
[15] Philipps, C.; Nagle, H., Digital Control System Analysis and Design (1995), Prentice Hall: Prentice Hall Englewood Cliffs
[16] Reddy, B. D., Introductory Functional Analysis, Texts in Applied Mathematics (1997), Springer: Springer New York
[17] Shampine, L. F.; Reichelt, M. W.; Kierzenka, J. A., Solving index-1 DAEs in MATLAB and Simulink, SIAM Review, 41, 538-552 (1999) · Zbl 0935.65082
[18] Sibarani, H.; Samyudia, Y., Robust nonlinear slab temperature control design for an industrial reheating furnace, Computer Aided Chemical Engineering, 18, 811-816 (2004)
[19] Skeel, R. D.; Berzins, M., A method for the spatial discretization of parabolic equations in one space variable, SIAM Journal on Scientific and Statistical Computing, 11, 1-32 (1990) · Zbl 0701.65065
[20] Steinboeck, A.; Wild, D.; Kiefer, T.; Kugi, A., A flexible time integration method for the 1D heat conduction problem, (Proceedings of the 6th Vienna Conference on Mathematical Modelling. Proceedings of the 6th Vienna Conference on Mathematical Modelling, Vienna, Austria, ARGESIM Report No. 35 (2009)), 1204-1214
[21] Wild, D.; Meurer, T.; Kugi, A., Modelling and experimental model validation for a pusher-type reheating furnace, Mathematical and Computer Modelling of Dynamical Systems, 15, 3, 209-232 (2009) · Zbl 1169.93308
[22] Yoshitani, N.; Ueyama, T.; Usui, M., Optimal slab heating control with temperature trajectory optimization, (Proceedings of the 20th International Conference on Industrial Electronics. Proceedings of the 20th International Conference on Industrial Electronics, Control and Instrumentation, IECON’94, vol. 3 (1994)), 1567-1572
[23] Zhang, B.; Chen, Z.; Xu, L.; Wang, J.; Zhang, J.; Shao, H., The modeling and control of a reheating furnace, (Proceedings of the American Control Conference. Proceedings of the American Control Conference, Anchorage, Alaska, USA (2002)), 3823-3828
[24] Zienkiewicz, O. C.; Morgan, K., Finite Elements and Approximation (1983), Wiley: Wiley New York · Zbl 0582.65068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.