×

zbMATH — the first resource for mathematics

Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. (English) Zbl 1244.54086
Summary: We establish tripled coincidence point theorems for a pair of mappings \(F:X\times X\times X\to X\) and \(g:X\to X\) satisfying a nonlinear contractive condition in ordered metric spaces. The presented theorems extend several existing results in the literature: [V. Lakshmikantham and L. Ćirić, Nonlinear Anal., Theory Methods Appl. 70, No. 12, A, 4341–4349 (2009; Zbl 1176.54032)], and [J. Harjani, B. López and K. Sadarangani, ibid. Ser. A, Theory Methods 74, No. 5, 1749-1760 (2011; Zbl 1218.54040)].

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abbas, M.; Ali Khan, M.; Radenović, S., Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. math. comput., 217, 1, 195-202, (2010) · Zbl 1197.54049
[2] Altun, I.; Damjanović, B.; Djorić, D., Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. math. lett., 23, 3, 310-316, (2010) · Zbl 1197.54052
[3] Altun, I.; Rakocević, V., Ordered cone metric spaces and fixed point results, Comput. math. appl., 60, 5, 1145-1151, (2010) · Zbl 1201.65084
[4] Beg, I.; Abbas, M., Fixed points and invariant approximation in random normed spaces, Carpathian J. math., 26, 1, 36-40, (2010) · Zbl 1212.47038
[5] Berinde, V., Iterative approximation of fixed points, Lecture notes in mathematics, 1912, (2007), Springer Berlin · Zbl 1165.47047
[6] Berinde, V.; Borcut, M., Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear anal., 74, 4889-4897, (2011) · Zbl 1225.54014
[7] Choudhury, B.S., A coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear anal., 73, 2524-2531, (2010) · Zbl 1229.54051
[8] Gnana Bhaskar, T.; Lakshmikantham, V., Fixed point theorems in partially ordered metric spaces and applications, Nonlinear anal., 65, 7, 1379-1393, (2006) · Zbl 1106.47047
[9] Harjani, J.; López, B.; Sadarangani, K., Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear anal., 74, 1749-1760, (2011) · Zbl 1218.54040
[10] Karapinar, E., Coupled fixed point theorems for nonlinear contractions in cone metric spaces, Comput. math. appl., 59, 12, 3656-3668, (2010) · Zbl 1198.65097
[11] Lakshmikantham, V.; Ćirić, L., Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear anal., 70, 4341-4349, (2009) · Zbl 1176.54032
[12] Nguyen, V.L.; Nguyen, X.T., Coupled fixed points in partially ordered metric spaces and application, Nonlinear anal., 74, 983-992, (2011) · Zbl 1202.54036
[13] Ran, A.C.M.; Reurings, M.C.B., A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. amer. math. soc., 132, 5, 1435-1443, (2004) · Zbl 1060.47056
[14] Rus, I.A., Generalized contractions and applications, (2001), Cluj University Press Cluj-Napoca · Zbl 0968.54029
[15] Rus, I.A.; Petruşel, A.; Petruşel, G., Fixed point theory, (2008), Cluj University Press Cluj-Napoca · Zbl 1171.54034
[16] Sabetghadam, F.; Masiha, H.P.; Sanatpour, A.H., Some coupled fixed point theorems in cone metric spaces, Fixed point theory. appl. art. ID, 125426, 8, (2009) · Zbl 1179.54069
[17] Samet, B., Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear anal., 72, 12, 4508-4517, (2010) · Zbl 1264.54068
[18] Sedghi, S.; Altun, I.; Shobe, N., Coupled fixed point theorems for contractions in fuzzy metric spaces, Nonlinear anal., 72, 3-4, 1298-1304, (2010) · Zbl 1180.54060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.