×

zbMATH — the first resource for mathematics

Torsion in the full orbifold \(K\)-theory of abelian symplectic quotients. (English) Zbl 1244.19005
In this paper, the full orbifold \(K\)-theory of abelian symplectic quotients is discussed. Let \((M, \omega)\) be a Hamilton \(T\)-space with moment map \(\Phi : M \to \mathfrak{t}^*\), where \(T\) is a torus. Let \(\beta : H \hookrightarrow T\) be a subtorus, then the moment map \(\Phi_H : M \to \mathfrak{h}^*\) for the action of \(H\) is given by the composition of \(\Phi\) and the linear projection \(\beta^* : \mathfrak{t}^* \to \mathfrak{h}^*\). Suppose \(\eta \in \mathfrak{h}^*\) is a regular value of \(\Phi_H\) and put \(Z=\Phi_H^{-1}(\eta)\). Then \(Z\) becomes a smooth submanifold of \(M\) with \(H\) acting locally freely. This allows us to define the quotient orbifold stack \(\mathfrak{X}=[Z/H]\). The authors prove that if there exists \(\xi \in \mathfrak{t}\) satisfying certain conditions (omitted here for simplicity), then \(\mathbb{K}_{\mathrm{orb}}(\mathfrak{X})\) contains no additive torsion, where \(\mathbb{K}_{\mathrm{orb}}(\mathfrak{X})\) is identified with \(\bigoplus_{t \in H}K_H(Z^t)\). However the hypothesis proposed perhaps may be already satisfied in many cases of interest. In fact, as an example of an important subclass of abelian symplectic quotients the authors mention the class of orbifold toric varieties, and check that they satisfy this hypothesis. In the last two sections, further examples are provided, which are non-toric.
The proof is done using equivariant Morse theory of the moment map. For the \(\xi\) given above, define a function \(\Phi^\xi : M \to \mathbb{R}\) by \(\Phi^\xi(x)=\langle \Phi(x), \xi \rangle\). Then it can be shown that the restriction \(\Phi^\xi|Z^t\) becomes a Morse-Bott function for each \(Z^t\). From analyzing them, the authors conclude that \(K_H(Z^t)\) is torsion-free for each \(Z^t\).

MSC:
19L47 Equivariant \(K\)-theory
53D20 Momentum maps; symplectic reduction
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Adem A., Ruan Y.: Twisted orbifold K-theory. Comm. Math. Phys. 237(3), 533–556 (2003) · Zbl 1051.57022
[2] Al Amrani A.: A comparison between cohomology and K-theory of weighted projective spaces. J. Pure Appl. Algebra 93(2), 129–134 (1994) · Zbl 0808.55005
[3] Al Amrani A.: Complex K-theory of weighted projective spaces. J. Pure Appl. Algebra 93(2), 113–127 (1994) · Zbl 0808.55004
[4] Al Amrani, A.: Cohomological study of weighted projective spaces. In Algebraic geometry (Ankara, 1995), of Lecture Notes in Pure and Appl. Math., vol. 193, pp. 1–52. Dekker, New York (1997) · Zbl 0899.14027
[5] Atiyah M.F.: Convexity and commuting Hamiltonians. Bull. London Math. Soc. 14(1), 1–15 (1982) · Zbl 0482.58013
[6] Atiyah M.F., Segal G.: Twisted K-theory. Ukr. Math. Bull. 1(3), 291–334 (2004)
[7] Bahri A., Franz M., Ray N.: The equivariant cohomology of weighted projective space. Math. Proc. Camb. Philos. Soc. 146(2), 395–405 (2009) · Zbl 1205.14022
[8] Becerra E., Uribe B.: Stringy product on twisted orbifold K-theory for abelian quotients. Trans. Am. Math. Soc. 361(11), 5781–5803 (2009) · Zbl 1191.14068
[9] Boissière, S., Mann, E., Perroni, F.: Crepant resolutions of weighted projective spaces and quantum deformations, (October 2006) math.AG/0610617 (2006) · Zbl 1178.14056
[10] Borisov L.A., Chen L., Smith G.G.: The orbifold Chow ring of toric Deligne-Mumford stacks. J. Am. Math. Soc. 18(1), 193–215 (2005) · Zbl 1178.14057
[11] Cannas da Silva A.: Lectures on Symplectic Geometry, Vol. 1764 of Lecture Notes in Mathematics. Springer, Berlin (2001) · Zbl 1016.53001
[12] Coates T., Corti A., Lee Y.-P., Tseng H.-H.: The quantum orbifold cohomology of weighted projective spaces. Acta Math. 202(2), 139–193 (2009) · Zbl 1213.53106
[13] Delzant T.: Hamiltoniens périodiques et images convexes de l’application moment. Bull. Soc. Math. France 116(3), 315–339 (1988) · Zbl 0676.58029
[14] Fulton W., Harris J.: Representation Theory: A First Course (Graduate Texts in Mathematics, Vol. 129). Springer, New York (1991) · Zbl 0744.22001
[15] Goldin, R., Harada, M., Holm, T., Kimura, T.: The full orbifold K-theory of abelian symplectic quotients. J. K-Theory. Cambridge University Press (2010). doi: 10.1017/is010005021jkt118 · Zbl 1229.19002
[16] Goresky M., Kottwitz R., MacPherson R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131, 25–83 (1998) · Zbl 0897.22009
[17] Guest, M., Sakai, H.: Orbifold quantum D-modules associated to weighted projective spaces, (August 2008) math.AG/0810.4236 (2008) · Zbl 1396.53115
[18] Guillemin V., Ginzburg V., Karshon Y.: Moment Maps, Cobordisms, and Hamiltonian Group Actions, Vol. 98 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2002) · Zbl 1197.53002
[19] Guillemin V., Sternberg S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge, UK (1984) · Zbl 0576.58012
[20] Guillemin V., Zara C.: 1-skeleta, Betti numbers, and equivariant cohomology. Duke Math. J. 107(2), 283–349 (2001) · Zbl 1020.57013
[21] Guillemin V., Zara C.: Combinatorial formulas for products of Thom classes. Geom. Mech. Dyn. 37(2), 363–405 (2002) · Zbl 1009.57034
[22] Harada M., Henriques A., Holm T.S.: Computation of generalized equivariant cohomologies of Kac-Moody flag varieties. Adv. Math. 197(1), 198–221 (2005) · Zbl 1110.55003
[23] Harada M., Holm T.S.: The equivariant cohomology of hypertoric varieties and their real loci. Comm. Anal. Geom. 13(3), 527–559 (2005) · Zbl 1088.53055
[24] Harada M., Landweber G.D.: Surjectivity for Hamiltonian G-spaces in K-theory. Trans. Am. Math. Soc. 359, 6001–6025 (2007) · Zbl 1128.53057
[25] Hilgert J., Neeb K.-H., Plank W.: Symplectic convexity theorems and coadjoint orbits. Compositio Math. 94(2), 129–180 (1994) · Zbl 0819.22006
[26] Holm, T.: Orbifold cohomology of abelian symplectic reductions and the case of weighted projective spaces Poisson geometry in mathematics and physics, 127–146, Contemp. Math., 450, Amer. Math. Soc., Providence, RI, (2008) · Zbl 1168.53040
[27] Hua, Z.: On the Grothendieck groups of toric stacks, (April 2009) math.AG:0904.2824v1 (2009)
[28] Jarvis T.J., Kaufman R., Kimura T.: Stringy K-theory and the Chern character. Invent. Math. 168(1), 23–81 (2007) · Zbl 1132.14047
[29] Kawasaki T.: Cohomology of twisted projective spaces and lens complexes. Math. Ann. 206, 243–248 (1973) · Zbl 0268.57005
[30] Kirwan F.: Cohomology of Quotients in Symplectic and Algebraic Geometry, Vol. 31 of Mathematical Notes. Princeton University Press, Princeton, NJ (1984) · Zbl 0553.14020
[31] Lerman E.: Gradient flow of the norm squared of a moment map. Enseign. Math. 51(1–2), 117–127 (2005) · Zbl 1103.53051
[32] Lerman E., Tolman S.: Hamiltonian torus actions on symplectic orbifolds and toric varieties. Trans. Am. Math. Soc. 349(10), 4201–4230 (1997) · Zbl 0897.58016
[33] Marsden J., Weinstein A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5(1), 121–130 (1974) · Zbl 0327.58005
[34] Nishimura Y., Yosimura Z.-i.: The quasi KO*-types of weighted projective spaces. J. Math. Kyoto Univ. 37(2), 251–259 (1997) · Zbl 0910.55002
[35] Segal G.: Equivariant K-theory. Inst. Hautes Tudes Sci. Publ. Math. 34, 129–151 (1968) · Zbl 0199.26202
[36] Tolman S., Weitsman J.: On the cohomology rings of Hamiltonian T-spaces. Proc. North. Calif. Symplectic Geom. Semin., AMS Transl. Ser. 2 196, 251–258 (1999) · Zbl 0955.57023
[37] Tymoczko, J.: Equivariant structure constants for ordinary and weighted projective space, (June 2008) http://arxiv.org/abs/0806.3588 (2008)
[38] Tymoczko, J.S.: An introduction to equivariant cohomology and homology, following Goresky, Kottwitz, and MacPherson, Snowbird lectures in algebraic geometry, 169–188, Contemp. Math. 388, Amer. Math. Soc., Providence, RI, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.