×

zbMATH — the first resource for mathematics

Energy-momentum/cotton tensor duality for \(AdS_{4}\) black holes. (English) Zbl 1243.83032
Summary: We consider the theory of gravitational quasi-normal modes for general linear perturbations of \(AdS_{4}\) black holes. Special emphasis is placed on the effective Schrödinger problems for axial and polar perturbations that realize supersymmetric partner potential barriers on the half-line. Using the holographic renormalization method, we compute the energy-momentum tensor for perturbations satisfying arbitrary boundary conditions at spatial infinity and discuss some aspects of the problem in the hydrodynamic representation. It is also observed in this general framework that the energy-momentum tensor of black hole perturbations and the energy momentum tensor of the gravitational Chern-Simons action (known as Cotton tensor) exhibit an axial-polar duality with respect to appropriately chosen supersymmetric partner boundary conditions on the effective Schrödinger wave-functions. This correspondence applies to perturbations of very large \(AdS_{4}\) black holes with shear viscosity to entropy density ratio equal to 1/\(4\pi \), thus providing a dual graviton description of their hydrodynamic modes. We also entertain the idea that the purely dissipative modes of black hole hydrodynamics may admit Ricci flow description in the non-linear regime.

MSC:
83C57 Black holes
81T20 Quantum field theory on curved space or space-time backgrounds
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] doi:10.1103/PhysRev.108.1063 · Zbl 0079.41902
[2] doi:10.1103/PhysRevLett.24.737
[3] doi:10.1103/PhysRevD.1.2870
[4] doi:10.1103/PhysRevD.1.3514
[5] doi:10.1098/rspa.1975.0112
[8] doi:10.1103/PhysRevD.64.084017
[9] doi:10.1103/PhysRevD.68.044024 · Zbl 1244.83017
[11] doi:10.1016/0550-3213(81)90006-7 · Zbl 1258.81046
[12] doi:10.1016/0550-3213(82)90071-2
[13] doi:10.1016/0370-1573(94)00080-M
[15] doi:10.1016/S0370-2693(98)00377-3 · Zbl 1355.81126
[18] doi:10.1007/BF01208266
[19] doi:10.1103/PhysRevD.62.024027
[21] doi:10.1002/(SICI)1521-3978(20001)48:1/3<125::AID-PROP125>3.0.CO;2-B · Zbl 0976.81093
[22] doi:10.1007/s002200100381 · Zbl 0984.83043
[23] doi:10.1142/S0217751X0100386X · Zbl 0982.83007
[25] doi:10.1007/s002200050764 · Zbl 0946.83013
[27] doi:10.1103/PhysRevD.47.1407
[28] doi:10.1103/PhysRevLett.94.111601
[29] doi:10.1103/PhysRevD.72.086009
[30] doi:10.1146/annurev.nucl.57.090506.123120
[31] doi:10.1103/PhysRevD.33.915
[34] doi:10.1016/0003-4916(76)90064-6
[35] doi:10.1016/0003-4916(79)90130-1
[36] doi:10.1016/0003-4916(83)90288-9 · Zbl 0536.76126
[39] doi:10.1103/PhysRevD.77.066014
[42] doi:10.1016/0003-4916(82)90164-6
[43] doi:10.1103/PhysRevLett.48.975
[46] doi:10.1103/PhysRevD.71.024018
[47] doi:10.1016/S0375-9601(99)00702-1 · Zbl 0937.83007
[48] doi:10.1016/j.physletb.2004.12.055 · Zbl 1247.81321
[49] doi:10.1103/PhysRevD.71.081502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.