×

zbMATH — the first resource for mathematics

Direct extraction of one loop rational terms. (English) Zbl 1243.81219
Summary: We present a method for the direct extraction of rational contributions to one-loop scattering amplitudes, missed by standard four-dimensional unitarity techniques. We use generalised unitarity in \(D = 4 - 2\epsilon\) dimensions to write the loop amplitudes in terms of products of massive tree amplitudes. We find that the rational terms in \(4 - 2\epsilon\) dimensions can be determined from quadruple, triple and double cuts without the need for independent pentagon contributions using a massive integral basis. The additional mass-dependent integral coefficients may then be extracted from the large mass limit which can be performed analytically or numerically. We check the method by computing the rational parts of all gluon helicity amplitudes with up to six external legs. We also present a simple application to amplitudes with external massless fermions.

MSC:
81V05 Strong interaction, including quantum chromodynamics
81T18 Feynman diagrams
Software:
CutTools; BlackHat
PDF BibTeX XML Cite
Full Text: DOI
References:
[2] doi:10.1016/0550-3213(94)90179-1 · Zbl 1049.81644
[3] doi:10.1016/0550-3213(94)00488-Z
[6] doi:10.1016/0550-3213(91)90011-L
[7] doi:10.1016/S0550-3213(97)00703-7
[8] doi:10.1016/j.nuclphysb.2005.02.030 · Zbl 1207.81088
[9] doi:10.1103/PhysRevLett.94.181602
[10] doi:10.1016/j.nuclphysb.2005.07.014 · Zbl 1178.81202
[11] doi:10.1103/PhysRevD.72.065012
[12] doi:10.1016/j.physletb.2006.11.037 · Zbl 1248.81135
[13] doi:10.1103/PhysRevD.73.105004
[14] doi:10.1016/j.physletb.2006.12.022
[17] doi:10.1103/PhysRevD.75.105006
[18] doi:10.1103/PhysRevD.78.025031
[23] doi:10.1016/j.nuclphysb.2006.11.012 · Zbl 1116.81067
[28] doi:10.1103/PhysRevD.75.125019
[31] doi:10.1103/PhysRevD.78.036003
[32] doi:10.1103/PhysRevD.77.025010
[35] doi:10.1103/PhysRevD.71.105013
[36] doi:10.1103/PhysRevD.72.125003
[37] doi:10.1103/PhysRevD.73.065013
[38] doi:10.1103/PhysRevD.74.036009
[39] doi:10.1103/PhysRevD.73.061701
[40] doi:10.1103/PhysRevD.75.016006
[41] doi:10.1103/PhysRevD.74.094021
[44] doi:10.1016/j.aop.2007.04.014 · Zbl 1122.81077
[45] doi:10.1016/0550-3213(96)00078-8
[46] doi:10.1016/S0370-2693(96)01676-0
[51] doi:10.1103/PhysRevD.73.014027
[56] doi:10.1016/0370-2693(81)90685-7
[57] doi:10.1016/0550-3213(82)90488-6
[58] doi:10.1016/0370-2693(85)90774-9
[59] doi:10.1016/0550-3213(87)90479-2
[60] doi:10.1016/0550-3213(85)90285-8
[61] doi:10.1016/0550-3213(86)90615-2
[64] doi:10.1103/PhysRevD.49.4438
[65] doi:10.1016/0550-3213(94)00542-M
[66] doi:10.1016/0550-3213(92)90134-W
[67] doi:10.1103/PhysRevD.66.085002
[68] doi:10.1016/0370-2693(93)90400-C
[70] doi:10.1103/PhysRevD.73.065007
[72] doi:10.1103/PhysRevLett.70.2677
[73] doi:10.1016/j.nuclphysb.2006.09.006 · Zbl 1116.81353
[74] doi:10.1016/0550-3213(94)90456-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.