×

zbMATH — the first resource for mathematics

Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth. (English) Zbl 1243.74170
Summary: We present a strain smoothing procedure for the extended finite element method (XFEM). The resulting “edge-based” smoothed extended finite element method (ESm-XFEM) is tailored to linear elastic fracture mechanics and, in this context, to outperform the standard XFEM. In the XFEM, the displacement-based approximation is enriched by the Heaviside and asymptotic crack tip functions using the framework of partition of unity. This eliminates the need for the mesh alignment with the crack and re-meshing, as the crack evolves. Edge-based smoothing (ES) relies on a generalized smoothing operation over smoothing domains associated with edges of simplex meshes, and produces a softening effect leading to a close-to-exact stiffness, “super-convergence” and “ultra-accurate” solutions. The present method takes advantage of both the ES-FEM and the XFEM. Thanks to the use of strain smoothing, the subdivision of elements intersected by discontinuities and of integrating the (singular) derivatives of the approximation functions is suppressed via transforming interior integration into boundary integration. Numerical examples show that the proposed method improves significantly the accuracy of stress intensity factors and achieves a near optimal convergence rate in the energy norm even without geometrical enrichment or blending correction.

MSC:
74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
74A45 Theories of fracture and damage
Software:
XFEM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int. J. numer. methods engrg., 45, 602-620, (1999) · Zbl 0943.74061
[2] Moes, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods engrg., 46, 1, 131-150, (1999) · Zbl 0955.74066
[3] Strouboulis, T.; Babuska, I.; Copps, K., The design and analysis of the generalized finite element method, Comput. methods appl. mech. engrg., 181, 43-96, (2000) · Zbl 0983.65127
[4] Babuska, I.; Melenk, J., The partition of unity finite element method, Int. J. numer. methods engrg., 40, 727-758, (1997) · Zbl 0949.65117
[5] Chessa, J.; Belytschko, T., An enriched finite element method for axisymmetric two-phase flow with surface tension, J. comput. phys., 58, 2041-2064, (2003) · Zbl 1032.76591
[6] Chopp, D.; Sukumar, N., Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method, Int. J. engrg. sci., 41, 8, 845-869, (2003) · Zbl 1211.74199
[7] Duddu, R.; Bordas, S.; Moran, B.; Chopp, D., A combined extended finite element and level set method for biofilm growth, Int. J. numer. methods engrg., 74, 5, 848-870, (2008) · Zbl 1195.74169
[8] Ji, H.; Chopp, D.; Dolbow, J., A hybrid extended finite element/level set method for modeling phase transformations, Int. J. numer. methods engrg., 54, 8, 1209-1233, (2002) · Zbl 1098.76572
[9] Merle, R.; Dolbow, J., Solving thermal and phase change problems with the extended finite element method, Comput. mech., 28, 5, 339-350, (2002) · Zbl 1073.76589
[10] Wagner, G.; Moes, N.; Liu, W.; Belytschko, T., The extended finite element method for Stokes flow past rigid cylinders, Int. J. numer. methods engrg., 51, 393-413, (2001)
[11] Liu, X.; Xiao, Q.; Karihaloo, B., XFEM for direct evaluation of mixed mode SIFS in homogeneous and bi-materials, Int. J. numer. methods engrg., 59, 8, 1103-1118, (2004) · Zbl 1041.74543
[12] van der Bos, F.; Gravemeier, V., Numerical simulation of premixed combustion using an enriched finite element method, J. comput. phys., 228, 10, 3605-3624, (2009) · Zbl 1165.80316
[13] Bordas, S.; Nguyen, V.; Dunant, C.; Nguyen-Dang, H.; Guidoum, A., An extended finite element library, Int. J. numer. methods engrg., 71, 6, 703-732, (2007) · Zbl 1194.74367
[14] Dunant, C.; Nguyen, P.; Belgasmia, M.; Bordas, S.; Guidoum, A.; Nguyen-Dang, H., Architecture trade-offs of including a mesher in an object-oriented extended finite element code, Euro. J. comput. mech., 16, 16, 237-258, (2007)
[15] A. Menk, S. Bordas, Influence of the microstructure on the stress state of solder joints during thermal cycling, EuroSimE, Delft University of Technology, The Netherlands, 2009.
[16] Bordas, S.; Moran, B., Enriched finite elements and level sets for damage tolerance assessment of complex structures, Engrg. fract. mech., 73, 9, 1176-1201, (2006)
[17] Sukumar, N.; Prevost, J.-H., Modeling quasi-static crack growth with the extended finite element method part I: computer implementation, Int. J. solids struct., 40, 7513-7537, (2003) · Zbl 1063.74102
[18] Karihaloo, B.; Xiao, Q., Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review, Comput. struct., 81, 3, 119-129, (2003)
[19] Belytschko, T.; Gracie, R.; Ventura, G., A review of extended/generalized finite element methods for material model, Model. simul. mater. sci. eng., 17, 4, 1-24, (2009)
[20] Ventura, G., On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method, Int. J. numer. methods engrg., 66, 5, 767-795, (2006) · Zbl 1110.74858
[21] Natarajan, S.; Mahaptra, D.R.; Bordas, S., Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework, Int. J. numer. methods engrg., (2010) · Zbl 1193.74153
[22] Natarajan, S.; Bordas, S.; Mahaptra, D.R., Numerical integration over arbitrary polygonal domains based on schwarz – christoffel conformal mapping, Int. J. numer. methods engrg., 80, 1, 103-134, (2009) · Zbl 1176.74190
[23] Xiao, Q.; Karihaloo, B., Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery, Int. J. numer. methods engrg., 66, 9, 1378-1410, (2006) · Zbl 1122.74529
[24] Bordas, S.; Duflot, M., Derivative recovery and a posteriori error estimation in extended finite element methods, Comput. methods appl. mech. engrg., 196, 35-36, 3381-3389, (2007) · Zbl 1173.74401
[25] Bordas, S.; Duflot, M.; Le, P., A simple a posteriori error estimator for the extended finite element method, Commun. numer. methods engrg., 24, 961-971, (2008) · Zbl 1156.65093
[26] Ródenas, J.; Gonzalez-Estrada, O.; Tarancon, J.; Fuenmayor, F.J., A recovery-type error estimator for the extended finite element method based on singular + smooth stress field splitting, Int. J. numer. methods engrg., 78, 4, 545-571, (2008) · Zbl 1195.74194
[27] Belytschko, T.; Lu, Y., Element-free Galerkin methods for static and dynamic fracture, Int. J. solids struct., 32, 2547-2570, (1995) · Zbl 0918.73268
[28] Rabczuk, T.; Belytschko, T.; Xiao, Q., Stable particle methods based on Lagrangian kernels, Comput. methods appl. mech. engrg., 193, 1035-1063, (2004) · Zbl 1060.74672
[29] Rabczuk, T.; Belytschko, T., Adaptivity for structured meshfree particle methods in 2D and 3D, Int. J. numer. methods engrg., 63, 11, 1559-1582, (2005) · Zbl 1145.74041
[30] Chessa, J.; Wang, H.; Belytschko, T., On the construction of blending elements for local partition of unity enriched finite elements, Int. J. numer. methods engrg., 57, 1015-1038, (2003) · Zbl 1035.65122
[31] Fries, T.-P., A corrected XFEM approximation without problems in blending elements, Int. J. numer. methods engrg., 75, 503-532, (2008) · Zbl 1195.74173
[32] Laborde, P.; Pommier, J.; Renard, Y.; Salaun, M., High-order extended finite element method for cracked domains, Int. J. numer. methods engrg., 64, 354-381, (2005) · Zbl 1181.74136
[33] Béchet, E.; Minnebo, H.; Moes, N.; Burgardt, B., Improved implementation and robustness study of the X-FEM for stress analysis around cracks, Int. J. numer. methods engrg., 64, 8, 1033-1056, (2005) · Zbl 1122.74499
[34] Menk, A.; Bordas, S., Numerically determined enrichment functions for the extended finite element method and applications to bi-material anisotropic fracture and polycrystals, Int. J. numer. methods engrg., (2010) · Zbl 1197.74182
[35] Menk, A.; Bordas, S., A robust preconditioning technique for the extended finite element method, Int. J. numer. methods engrg., 85, 13, 1609-1632, (2011) · Zbl 1217.74128
[36] Chen, J.S.; Wu, C.T.; Yoon, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. numer. methods engrg., 50, 435-466, (2001) · Zbl 1011.74081
[37] Yoo, J.W.; Moran, B.; Chen, J.S., Stabilized conforming nodal integration in the natural-element method, Int. J. numer. method engrg., 60, 861-890, (2004) · Zbl 1060.74677
[38] Liu, G.R., A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods, Int. J. comput. methods, 5, 2, 199-236, (2008) · Zbl 1222.74044
[39] Liu, G.R., A G space theory and weakened weak (W2) form for a unified formulation of compatible and incompatible methods: part I theory, Int. J. numer. methods engrg., 81, 1093-1126, (2009) · Zbl 1183.74358
[40] Liu, G.R.; Dai, K.Y.; Nguyen, T.T., A smoothed finite element method for mechanics problems, Comput. mech., 39, 859-877, (2007) · Zbl 1169.74047
[41] Liu, G.R.; Nguyen, T.T.; Dai, K.Y.; Lam, K.Y., Theoretical aspects of the smoothed finite element method (SFEM), Int. J. numer. methods engrg., 71, 902-930, (2007) · Zbl 1194.74432
[42] Liu, G.R.; Nguyen-Thoi, T.; Lam, K.Y., A node-based smoothed finite element method for upper bound solution to solid problems (NS-FEM), Comput. struct., 87, 14-26, (2008)
[43] Liu, G.R.; Nguyen-Thoi, T.; Lam, K.Y., An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analysis, J. sound vib., 320, 1100-1130, (2009)
[44] Nguyen-Thoi, T.; Liu, G.R.; Lam, K.Y., A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements, Int. J. numer. methods engrg., 78, 324-353, (2009) · Zbl 1183.74299
[45] Dai, K.Y.; Liu, G.R., Free and forced analysis using the smoothed finite element method (SFEM), J. sound vib., 301, 803-820, (2007)
[46] Nguyen-Xuan, H.; Bordas, S.; Nguyen-Dang, H., Addressing volumetric locking and instabilities by selective integration in smoothed finite elements, Commun. numer. methods engrg., 25, 9-34, (2008) · Zbl 1169.74044
[47] Nguyen- Xuan, H.; Nguyen-Thoi, T., A stabilized smoothed finite element method for free vibration analysis of Mindlin-Reissner plates, Commun. numer. methods engrg., (2009) · Zbl 1172.74047
[48] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S., A smoothed finite element method for shell analysis, Comput. meth. appl. mech. engrg., 198, 165-177, (2008) · Zbl 1194.74453
[49] Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S.; Debongnie, J.F., A smoothed finite element method for plate analysis, Comput. methods appl. mech. engrg., 197, 1184-1203, (2008) · Zbl 1159.74434
[50] Bordas, S.; Rabczuk, T.; Nguyen-Xuan, H.; Nguyen-Vinh, P.; Natarajan, S.; Bog, T.; Do-Minh, Q.; Nguyen-Vinh, H., Strain smoothing in FEM and XFEM, Comput. struct., (2009)
[51] Chen, L.; Nguyen-Xuan, H.; Nguyen-Thoi, T.; Zeng, K.Y.; Wu, S.C., Assessment of smoothed point interpolation methods for elastic mechanics, Commun. numer. methods engrg., (2009) · Zbl 1323.74080
[52] Bordas, S.; Ronald, H.; Hoppe, W.; Petrova, S., Mechanical failure in microstructural heterogeneous materials, Proceedings of the sixth international conference on numerical methods and applications, vol. 6, (2006), Springer Berlin, pp. 24-26
[53] Belytschko, T.; Moës, N.; Usui, S.; Parimi, C., Arbitrary discontinuities in finite elements, Int. J. numer. methods engrg., 50, 4, 993-1013, (2001) · Zbl 0981.74062
[54] Westergaard, H.M., Bearing and cracks, J. appl. mech., 61, 49-53, (1939)
[55] Bordas, S.; Natarajan, S.; Kerfriden, P.; Augarde, C.E.; Mahapatra, D.R.; Rabczuk, T.; Pont, S.D., On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM), Int. J. numer. methods engrg., 86, 4-5, 637-666, (2011) · Zbl 1216.74019
[56] Erdogan, F.; Sih, G., On the crack extension in plates under plane loading and transverse shear, J. basic engrg., 85, 519-527, (1963)
[57] Chen, L.; Liu, G.R.; Nourbakhsh, N.N.; Zeng, K., A singular edge-based smoothed finite element method (ES-FEM) for bimaterial interface cracks, Comput. mech., 45, 109-125, (2010) · Zbl 1398.74316
[58] Anderson, T.L., Fracture mechanics: fundamentals and applications, (1995), CRC press · Zbl 0999.74001
[59] E. Béchet, M. Scherzer, M. Kuna, Application of the X-FEM to the fracture of piezoelectric materials, Int. J. Numer. Methods Engrg. doi:10.1002/nme.2455.
[60] Ventura, G.; Gracie, R.; Belytschko, T., Fast integration and weight function blending in the extended finite element method, Int. J. numer. methods engrg., 77, 1-29, (2009) · Zbl 1195.74201
[61] Sih, G.C., Energy-density concept in fracture mechanics, Engrg. fract. mech., 5, 1037-1040, (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.