×

zbMATH — the first resource for mathematics

Around the circular law. (English) Zbl 1243.15022
Summary: These expository notes are centered around the circular law theorem, which states that the empirical spectral distribution of a \(n\times n\) random matrix with i.i.d. entries of variance \(1/n\) tends to the uniform law on the unit disc of the complex plane as the dimension \(n\) tends to infinity. This phenomenon is the non-Hermitian counterpart of the semi circular limit for Wigner random Hermitian matrices, and the quarter circular limit for Marchenko-Pastur random covariance matrices. We present a proof in a Gaussian case, due to Silverstein, based on a formula by Ginibre, and a proof of the universal case by revisiting the approach of Tao and Vu, based on the Hermitization of Girko, the logarithmic potential, and the control of the small singular values. Beyond the finite variance model, we also consider the case where the entries have heavy tails, by using the objective method of Aldous and Steele borrowed from randomized combinatorial optimization. The limiting law is then no longer the circular law and is related to the Poisson weighted infinite tree. We provide a weak control of the smallest singular value under weak assumptions, using asymptotic geometric analysis tools. We also develop a quaternionic Cauchy-Stieltjes transform borrowed from the Physics literature.

MSC:
15B52 Random matrices (algebraic aspects)
60B20 Random matrices (probabilistic aspects)
60F15 Strong limit theorems
Software:
Eigtool
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Adamczak, R. (2011). On the Marchenko-Pastur and circular laws for some classes of random matrices with dependent entries. Electronic Journal of Probability 16 1065-1095. · Zbl 1221.15049 · doi:10.1214/EJP.v16-899 · emis:journals/EJP-ECP/_ejpecp/viewarticleb3cd.html
[2] Akemann, G. and Kanzieper, E. (2007). Integrable structure of Ginibre’s ensemble of real random matrices and a Pfaffian integration theorem. J. Stat. Phys. 129 1159-1231. · Zbl 1136.82019 · doi:10.1007/s10955-007-9381-2
[3] Akemann, G., Phillips, M. J. and Shifrin, L. (2009). Gap probabilities in non-Hermitian random matrix theory. J. Math. Phys. 50 063504, 32. · Zbl 1216.60007 · doi:10.1063/1.3133108 · arxiv:0901.0897
[4] Aldous, D. (1992). Asymptotics in the random assignment problem. Probab. Theory Related Fields 93 507-534. · Zbl 0767.60006 · doi:10.1007/BF01192719
[5] Aldous, D. and Lyons, R. (2007). Processes on unimodular random networks. Electron. J. Probab. 12 no. 54, 1454-1508 (electronic). · Zbl 1131.60003 · doi:10.1214/EJP.v12-463 · eudml:128491
[6] Aldous, D. and Steele, J. M. (2004). The objective method: probabilistic combinatorial optimization and local weak convergence. In Probability on discrete structures . Encyclopaedia Math. Sci. 110 1-72. Springer, Berlin. · Zbl 1037.60008
[7] Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An introduction to random matrices . Cambridge Studies in Advanced Mathematics 118 . Cambridge University Press, Cambridge. · Zbl 1184.15023
[8] Andrew, A. L. (1990). Eigenvalues and singular values of certain random matrices. J. Comput. Appl. Math. 30 165-171. · Zbl 0699.65027 · doi:10.1016/0377-0427(90)90025-U
[9] Azaïs, J.-M. and Wschebor, M. (2005). On the roots of a random system of equations. The theorem on Shub and Smale and some extensions. Found. Comput. Math. 5 125-144. · Zbl 1101.60035 · doi:10.1007/s10208-004-0119-0
[10] Bai, Z. D. (1997). Circular law. Ann. Probab. 25 494-529. · Zbl 0871.62018 · doi:10.1214/aop/1024404298
[11] Bai, Z. D. and Silverstein, J. W. (2006). Spectral Analysis of Large Dimensional Random Matrices . Mathematics Monograph Series 2 . Science Press, Beijing. · Zbl 1196.60002
[12] Bai, Z. D., Silverstein, J. W. and Yin, Y. Q. (1988). A note on the largest eigenvalue of a large-dimensional sample covariance matrix. J. Multivariate Anal. 26 166-168. · Zbl 0652.60040 · doi:10.1016/0047-259X(88)90078-4
[13] Bai, Z. D. and Yin, Y. Q. (1986). Limiting behavior of the norm of products of random matrices and two problems of Geman-Hwang. Probab. Theory Related Fields 73 555-569. · Zbl 0586.60021 · doi:10.1007/BF00324852
[14] Bai, Z. D. and Yin, Y. Q. (1993). Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix. Ann. Probab. 21 1275-1294. · Zbl 0779.60026 · doi:10.1214/aop/1176989118
[15] Belinschi, S., Dembo, A. and Guionnet, A. (2009). Spectral measure of heavy tailed band and covariance random matrices. Comm. Math. Phys. 289 1023-1055. · Zbl 1221.15050 · doi:10.1007/s00220-009-0822-4
[16] Ben Arous, G. and Guionnet, A. (2008). The spectrum of heavy tailed random matrices. Comm. Math. Phys. 278 715-751. · Zbl 1157.60005 · doi:10.1007/s00220-007-0389-x
[17] Ben Arous, G. and Zeitouni, O. (1998). Large deviations from the circular law. ESAIM Probab. Statist. 2 123-134 (electronic). · Zbl 0916.60022 · doi:10.1051/ps:1998104
[18] Benaych-Georges, F. and Chapon, F. (2011). Random right eigenvalues of Gaussian quaternionic matrices. preprint arXiv: · Zbl 1245.15035 · arxiv.org
[19] Bender, M. (2010). Edge scaling limits for a family of non-Hermitian random matrix ensembles. Probab. Theory Related Fields 147 241-271. · Zbl 1188.60003 · doi:10.1007/s00440-009-0207-9
[20] Biane, P. and Lehner, F. (2001). Computation of some examples of Brown’s spectral measure in free probability. Colloq. Math. 90 181-211. · Zbl 0988.22004 · doi:10.4064/cm90-2-3
[21] Bloom, T. and Shiffman, B. (2007). Zeros of random polynomials on \(. Math. Res. Lett. 14 469-479.\) · Zbl 1131.60048 · doi:10.4310/MRL.2007.v14.n3.a11
[22] Bordenave, C. (2011). On the spectrum of sum and product of non-Hermitian random matrices. Electronic Communications in Probability 16 104-113. · Zbl 1227.60010 · doi:10.1214/ECP.v16-1606 · emis:journals/EJP-ECP/_ejpecp/ECP/viewarticle687c.html
[23] Bordenave, C., Caputo, P. and Chafaï, D. (2011). Circular Law Theorem for Random Markov Matrices. preprint arXiv: · Zbl 1242.15034 · doi:10.1007/s00440-010-0336-1 · arxiv.org
[24] Bordenave, C., Caputo, P. and Chafaï, D. (2011). The spectral measure of random generators. preprint in preparation. · Zbl 1245.60008
[25] Bordenave, C., Caputo, P. and Chafaï, D. (2011). Spectrum of large random reversible Markov chains: Heavy-tailed weigths on the complete graph. Annals of Probability 39 1544-1590. · Zbl 1245.60008 · doi:10.1214/10-AOP587
[26] Bordenave, C., Caputo, P. and Chafaï, D. (2011). Spectrum of non-Hermitian heavy tailed random matrices. Communications in Mathematical Physics 307 513-560. · Zbl 1235.60008 · doi:10.1007/s00220-011-1331-9
[27] Borodin, A. and Sinclair, C. D. (2009). The Ginibre ensemble of real random matrices and its scaling limits. Comm. Math. Phys. 291 177-224. · Zbl 1184.82004 · doi:10.1007/s00220-009-0874-5
[28] Bouchaud, J. P. and Cizeau, P. (1994). Theory of Lévy matrices. Phys. Rev. E 3 1810-1822.
[29] Bourgain, J., Vu, V. H. and Wood, P. M. (2010). On the singularity probability of discrete random matrices. J. Funct. Anal. 258 559-603. · Zbl 1186.60003 · doi:10.1016/j.jfa.2009.04.016
[30] Brown, L. G. (1986). Lidskiĭ’s theorem in the type \( case. In Geometric methods in operator algebras (Kyoto, 1983) . Pitman Res. Notes Math. Ser. 123 1-35. Longman Sci. Tech., Harlow.\) · Zbl 0646.46058
[31] Chafaï, D. (2010). Circular law for noncentral random matrices. Journal of Theoretical Probability 23 945-950. · Zbl 1204.60008 · doi:10.1007/s10959-010-0285-8
[32] Chafaï, D. (2010). The Dirichlet Markov Ensemble. J. of Multivariate Analysis 101 555-567. · Zbl 1187.15036 · doi:10.1016/j.jmva.2009.10.013
[33] Chafaï, D., Guédon, O., Lecué, G. and Pajor, A. (2011). Interactions between compressed sensing, random matrices, and high dimensional geometry. forthcoming book [URL]. · Zbl 1396.94015
[34] Chatterjee, S. (2006). A generalization of the Lindeberg principle. Ann. Probab. 34 2061-2076. · Zbl 1117.60034 · doi:10.1214/009117906000000575
[35] Chatterjee, S., Diaconis, P. and Sly, A. (2010). Properties of Uniform Doubly Stochastic Matrices. preprint arXiv: · arxiv.org
[36] Chen, Z., Zhang, J.-T. and Hu, F., eds. (2008). Advances in statistics . World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ Including the proceedings of the conference in honor of Professor Zhidong Bai on his 65th birthday, held at the National Uni. of Singapore, Singapore, July 20, 2008.
[37] Dellacherie, C. and Meyer, P.-A. (1978). Probabilities and potential . North-Holland Mathematics Studies 29 . North-Holland Publishing Co., Amsterdam. · Zbl 0494.60001
[38] Dong, Z., Jiang, T. and Li, D. (2011). Circular Law and Arc Law for Truncation of Random Unitary Matrix. preprint, personal communication by Tiefeng Jiang.
[39] Dozier, R. B. and Silverstein, J. W. (2007). On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices. J. Multiv. Anal. 98 678-694. · Zbl 1115.60035 · doi:10.1016/j.jmva.2006.09.006
[40] Edelman, A. (1988). Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl. 9 543-560. · Zbl 0678.15019 · doi:10.1137/0609045
[41] Edelman, A. (1997). The probability that a random real Gaussian matrix has k real eigenvalues, related distributions, and the circular law. J. Multivariate Anal. 60 203-232. · Zbl 0886.15024 · doi:10.1006/jmva.1996.1653
[42] Edelman, A. and Kostlan, E. (1995). How many zeros of a random polynomial are real? Bull. Amer. Math. Soc. (N.S.) 32 1-37. · Zbl 0820.34038 · doi:10.1090/S0273-0979-1995-00571-9
[43] Edelman, A. and Kostlan, E. (1996). Erratum: “How many zeros of a random polynomial are real?” [Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 1-37]. Bull. Amer. Math. Soc. (N.S.) 33 325. · Zbl 0820.34038 · doi:10.1090/S0273-0979-1995-00571-9
[44] Edelman, A., Kostlan, E. and Shub, M. (1994). How many eigenvalues of a random matrix are real? J. Amer. Math. Soc. 7 247-267. · Zbl 0790.15017 · doi:10.2307/2152729
[45] Emiris, I., Galligo, A. and Tsigaridas, E. (2010). Random polynomials and expected complexity of bisection methods for real solving. preprint arXiv: · Zbl 1321.68308 · arxiv.org
[46] Erdős, L., Schlein, B. and Yau, H.-T. (2010). Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. IMRN 3 436-479. · Zbl 1204.15043 · doi:10.1093/imrn/rnp136
[47] Feinberg, J. and Zee, A. (1997). Non-Gaussian non-Hermitian random matrix theory: phase transition and addition formalism. Nuclear Phys. B 501 643-669. · Zbl 0933.82024 · doi:10.1016/S0550-3213(97)00419-7
[48] Feinberg, J. and Zee, A. (1997). Non-Hermitian Random Matrix Theory: Method of Hermitian Reduction. Nucl. Phys. B 3 579-608. · Zbl 0925.15010 · doi:10.1016/S0550-3213(97)00502-6
[49] Forrester, P. J. (2010). Log-gases and random matrices . London Mathematical Society Monographs Series 34 . Princeton University Press, Princeton, NJ. · Zbl 1217.82003
[50] Forrester, P. J. and Krishnapur, M. (2009). Derivation of an eigenvalue probability density function relating to the Poincaré disk. J. of Physics A: Math. and Theor. 42 385204. · Zbl 1187.15037 · doi:10.1088/1751-8113/42/38/385204
[51] Fuglede, B. and Kadison, R. V. (1952). Determinant theory in finite factors. Ann. of Math. (2) 55 520-530. · Zbl 0046.33604 · doi:10.2307/1969645
[52] Galligo, A. (2010). Intriguing Patterns in the Roots of the Derivatives of some Random Polynomials. preprint oai:hal.inria.fr:i nria-00552081.
[53] Ginibre, J. (1965). Statistical ensembles of complex, quaternion, and real matrices. J. Mathematical Phys. 6 440-449. · Zbl 0127.39304 · doi:10.1063/1.1704292
[54] Girko, V. L. (1984). The circular law. Teor. Veroyatnost. i Primenen. 29 669-679. · Zbl 0565.60034
[55] Girko, V. L. (1990). Theory of random determinants . Mathematics and its Applications (Soviet Series) 45 . Kluwer Academic Publishers Group, Dordrecht. Translated from the Russian. · Zbl 0704.60003
[56] Girko, V. L. (1994). The circular law: ten years later. Random Oper. Stochastic Equations 2 235-276. · Zbl 0839.60038 · doi:10.1515/rose.1994.2.3.235
[57] Girko, V. L. (2001). Theory of stochastic canonical equations. Vol. I . Mathematics and its Applications 535 . Kluwer Academic Publishers, Dordrecht. · Zbl 0996.60003
[58] Girko, V. L. (2004). The strong circular law. Twenty years later. I. Random Oper. Stochastic Equations 12 49-104. · Zbl 1088.60019 · doi:10.1163/156939704323067834
[59] Girko, V. L. (2004). The strong circular law. Twenty years later. II. Random Oper. Stochastic Equations 12 255-312. · Zbl 1065.60026 · doi:10.1163/1569397042222477
[60] Girko, V. L. (2005). The circular law. Twenty years later. III. Random Oper. Stochastic Equations 13 53-109. · Zbl 1088.60020 · doi:10.1163/1569397053300946
[61] Girko, V. L. and Vladimirova, A. I. (2010). L.I.F.E.: \prod m j =1 H ( j ) n \sim L.I.F.E.\~ \sim H (1) n m and Halloween Law. Random Oper. Stoch. Equ. 18 327-353. · Zbl 1237.60008 · doi:10.1515/rose.2010.018
[62] Goldman, A. (2010). The Palm measure and the Voronoi tessellation for the Ginibre process. Ann. Appl. Probab. 20 90-128. · Zbl 1197.60047 · doi:10.1214/09-AAP620
[63] Goldsheid, I. Y. and Khoruzhenko, B. A. (2000). Eigenvalue curves of asymmetric tridiagonal random matrices. Electron. J. Probab. 5 no. 16, 28 pp. (electronic). · Zbl 0983.82006 · doi:10.1214/EJP.v5-72 · emis:journals/EJP-ECP/EjpVol5/paper16.abs.html · eudml:121755
[64] Goldsheid, I. Y. and Khoruzhenko, B. A. (2005). The Thouless formula for random non-Hermitian Jacobi matrices. Israel J. Math. 148 331-346. Probability in mathematics. · Zbl 1185.15034 · doi:10.1007/BF02775442
[65] Golub, G. H. and Van Loan, C. F. (1996). Matrix computations , third ed. Johns Hopkins Studies in the Mathematical Sciences . Johns Hopkins University Press, Baltimore, MD. · Zbl 0865.65009
[66] Götze, F. and Tikhomirov, A. (2010). The circular law for random matrices. Ann. Probab. 38 1444-1491. · Zbl 1203.60010 · doi:10.1214/09-AOP522
[67] Götze, F. and Tikhomirov, A. (2010). On the Asymptotic Spectrum of Products of Independent Random Matrices. arXiv: · Zbl 1211.60003 · arxiv.org
[68] Götze, F. and Zaporozhets, D. (2011). On the Distribution of Complex Roots of Random Polynomials with Heavy-tailed Coefficients. arXiv: · Zbl 1266.60095 · arxiv.org
[69] Gudowska-Nowak, E., Jarosz, A., Nowak, M. and Pappe, G. (2007). Towards non-Hermitian random Lévy matrices. Acta Physica Polonica B 38 4089-4104. · Zbl 1371.82040
[70] Guionnet, A., Krishnapur, M. and Zeitouni, O. (2009). The single ring theorem. preprint available on arXiv: · Zbl 1239.15018 · doi:10.4007/annals.2011.174.2.10 · arxiv.org
[71] Guionnet, A., Wood, P. M. and Zeitouni, O. (2011). Convergence of the spectral measure of non normal matrices. preprint arXiv: · Zbl 1302.60020 · arxiv.org
[72] Guionnet, A. and Zeitouni, O. (2000). Concentration of the spectral measure for large matrices. Electron. Comm. Probab. 5 119-136 (electronic). · Zbl 0969.15010 · doi:10.1214/ECP.v5-1026 · emis:journals/EJP-ECP/EcpVol5/paper14.abs.html · eudml:121231
[73] Guionnet, A. and Zeitouni, O. (2010). Support convergence in the single ring theorem. preprint arXiv: · Zbl 1261.15043 · arxiv.org
[74] Guntuboyina, A. and Leeb, H. (2009). Concentration of the spectral measure of large Wishart matrices with dependent entries. Electron. Commun. Probab. 14 334-342. · Zbl 1188.15035 · doi:10.1214/ECP.v14-1483 · emis:journals/EJP-ECP/_ejpecp/ECP/viewarticled643.html · eudml:231929
[75] Haagerup, U. and Larsen, F. (2000). Brown’s spectral distribution measure for R -diagonal elements in finite von Neumann algebras. J. Funct. Anal. 176 331-367. · Zbl 0984.46042 · doi:10.1006/jfan.2000.3610
[76] Haagerup, U. and Schultz, H. (2007). Brown measures of unbounded operators affiliated with a finite von Neumann algebra. Math. Scand. 100 209-263. · Zbl 1168.46039
[77] Hammersley, J. M. (1956). The zeros of a random polynomial. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954-1955, vol. II 89-111. University of California Press, Berkeley and Los Angeles. · Zbl 0074.34302
[78] Holz, D. E., Orland, H. and Zee, A. (2003). On the remarkable spectrum of a non-Hermitian random matrix model. J. Phys. A 36 3385-3400. Random matrix theory. · Zbl 1038.15016 · doi:10.1088/0305-4470/36/12/330
[79] Hörmander, L. (1983). The analysis of linear partial differential operators. I . Fundamental Principles of Mathematical Sciences 256 . Springer-Verlag Distribution theory and Fourier analysis. · Zbl 0521.35002
[80] Horn, A. (1954). On the eigenvalues of a matrix with prescribed singular values. Proc. Amer. Math. Soc. 5 4-7. · Zbl 0055.00908 · doi:10.2307/2032094
[81] Horn, R. A. and Johnson, C. R. (1990). Matrix analysis . Cambridge University Press, Cambridge. Corrected reprint of the 1985 original. · Zbl 0704.15002
[82] Horn, R. A. and Johnson, C. R. (1994). Topics in matrix analysis . Cambridge University Press, Cambridge. Corrected reprint of the 1991 original. · Zbl 0801.15001
[83] Hough, J. B., Krishnapur, M., Peres, Y. and Virág, B. (2009). Zeros of Gaussian analytic functions and determinantal point processes . University Lecture Series 51 . AMS, Providence, RI. · Zbl 1190.60038
[84] Hwang, C. R. (1986). A brief survey on the spectral radius and the spectral distribution of large random matrices with i.i.d. entries. In Random matrices and their applications (Brunswick, Maine, 1984) . Contemp. Math. 50 145-152. Amer. Math. Soc., Providence, RI. · Zbl 0584.60019 · doi:10.1090/conm/050/841088
[85] Ibragimov, I. A. and Maslova, N. B. (1968). The average number of zeros of random polynomials. Vestnik Leningrad. Univ. 23 171-172. · Zbl 0235.60060
[86] Ibragimov, I. A. and Maslova, N. B. (1971). The average number of real roots of random polynomials. Dokl. Akad. Nauk SSSR 199 13-16. · Zbl 0277.60053
[87] Ibragimov, I. A. and Maslova, N. B. (1971). The mean number of real zeros of random polynomials. I. Coefficients with zero mean. Teor. Verojatnost. i Primenen. 16 229-248. · Zbl 0277.60051 · doi:10.1137/1116023
[88] Ibragimov, I. A. and Maslova, N. B. (1971). The mean number of real zeros of random polynomials. II. Coefficients with a nonzero mean. Teor. Verojatnost. i Primenen. 16 495-503. · Zbl 0277.60052 · doi:10.1137/1116052
[89] Jiang, T. (2009). Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles. Probab. Theory Related Fields 144 221-246. · Zbl 1162.60005 · doi:10.1007/s00440-008-0146-x
[90] Johansson, K. (2007). From Gumbel to Tracy-Widom. Probab. Theory Related Fields 138 75-112. · Zbl 1116.60020 · doi:10.1007/s00440-006-0012-7
[91] Kac, M. (1943). A correction to “On the average number of real roots of a random algebraic equation.”. Bull. Amer. Math. Soc. 49 938. · Zbl 0060.28603 · doi:10.1090/S0002-9904-1943-08069-X
[92] Kac, M. (1943). On the average number of real roots of a random algebraic equation. Bull. Amer. Math. Soc. 49 314-320. · Zbl 0060.28602 · doi:10.1090/S0002-9904-1943-07912-8
[93] Kac, M. (1949). On the average number of real roots of a random algebraic equation. II. Proc. London Math. Soc. (2) 50 390-408. · Zbl 0033.14702 · doi:10.1112/plms/s2-50.5.390
[94] Kesten, H. (1959). Symmetric random walks on groups. Trans. Amer. Math. Soc. 92 336-354. · Zbl 0092.33503 · doi:10.2307/1993160
[95] Khorunzhy, A., Khoruzhenko, B., Pastur, L. and Shcherbina, M. (1992). The large-n limit in statistical mechanics and the spectral theory of disordered systems. In: Phase transition and critical phenomena 15 74-239.
[96] Kostlan, E. (1992). On the spectra of Gaussian matrices. Linear Algebra Appl. 162/164 385-388. Directions in matrix theory (Auburn, AL, 1990). · Zbl 0748.15024 · doi:10.1016/0024-3795(92)90386-O
[97] Lebœuf, P. (1999). Random analytic chaotic eigenstates. J. Statist. Phys. 95 651-664. · Zbl 1156.81396 · doi:10.1023/A:1004595310043
[98] Ledoux, M. (2001). The concentration of measure phenomenon . Mathematical Surveys and Monographs 89 . American Mathematical Society, Providence, RI. · Zbl 0995.60002
[99] Ledoux, M. (2008). Complex Hermite polynomials: from the semi-circular law to the circular law. Commun. Stoch. Anal. 2 27-32. · Zbl 1331.33025
[100] LePage, R., Woodroofe, M. and Zinn, J. (1981). Convergence to a stable distribution via order statistics. Ann. Probab. 9 624-632. · Zbl 0465.60031 · doi:10.1214/aop/1176994367
[101] Littlewood, J. E. and Offord, A. C. (1943). On the number of real roots of a random algebraic equation. III. Rec. Math. [Mat. Sbornik] N.S. 12(54) 277-286. · Zbl 0061.01801 · eudml:65225
[102] Litvak, A. E., Pajor, A., Rudelson, M. and Tomczak-Jaegermann, N. (2005). Smallest singular value of random matrices and geometry of random polytopes. Adv. Math. 195 491-523. · Zbl 1077.15021 · doi:10.1016/j.aim.2004.08.004
[103] Logan, B. F. and Shepp, L. A. (1968). Real zeros of random polynomials. Proc. London Math. Soc. (3) 18 29-35. · Zbl 0245.60047 · doi:10.1112/plms/s3-18.1.29
[104] Logan, B. F. and Shepp, L. A. (1968). Real zeros of random polynomials. II. Proc. London Math. Soc. (3) 18 308-314. · Zbl 0177.45201 · doi:10.1112/plms/s3-18.2.308
[105] Lyons, R. (2010). Identities and inequalities for tree entropy. Combin. Probab. Comput. 19 303-313. · Zbl 1215.05031 · doi:10.1017/S0963548309990605
[106] Male, C. (2011). Free probability on traffics: the limiting distribution of heavy Wigner and deterministic matrices. preprint, personal communication.
[107] Maslova, N. B. (1974). The distribution of the number of real roots of random polynomials. Teor. Verojatnost. i Primenen. 19 488-500. · Zbl 0345.60014 · doi:10.1137/1119055
[108] Maslova, N. B. (1974). The variance of the number of real roots of random polynomials. Teor. Verojatnost. i Primenen. 19 36-51. · Zbl 0321.60007 · doi:10.1137/1119004
[109] McDiarmid, C. (1989). On the method of bounded differences. In Surveys in combinatorics, 1989 (Norwich, 1989) . London Math. Soc. Lecture Note Ser. 141 148-188. CUP, Cambridge. · Zbl 0712.05012
[110] McKay, B. D. (1981). The expected eigenvalue distribution of a large regular graph. Linear Algebra Appl. 40 203-216. · Zbl 0468.05039 · doi:10.1016/0024-3795(81)90150-6
[111] Meckes, M. (2009). Some results on random circulant matrices. High Dimensional Probability V: The Luminy Volume 213-223. · Zbl 1243.60008 · doi:10.1214/09-IMSCOLL514 · euclid:imsc/1265119270
[112] Mehta, M. L. (1967). Random matrices and the statistical theory of energy levels . Acad. Press. · Zbl 0925.60011
[113] Mehta, M. L. (2004). Random matrices , third ed. Pure and Applied Mathematics 142 . Acad. Press. · Zbl 1107.15019
[114] O’Rourke, S. and Soshnikov, A. (2010). Products of Independent Non-Hermitian Random Matrices. preprint arXiv: · Zbl 1244.60011 · doi:10.1214/EJP.v16-954 · arxiv.org
[115] Pan, G. M. and Zhou, W. (2010). Circular law, extreme singular values and potential theory. J. Multivar. Anal. 101 645-656. · Zbl 1203.60011 · doi:10.1016/j.jmva.2009.08.005
[116] Panchenko, D. and Talagrand, M. (2007). On one property of Derrida-Ruelle cascades. C. R. Math. Acad. Sci. Paris 345 653-656. · Zbl 1131.82046 · doi:10.1016/j.crma.2007.10.035
[117] Peres, Y. and Virág, B. (2005). Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process. Acta Math. 194 1-35. · Zbl 1099.60037 · doi:10.1007/BF02392515
[118] Petz, D. and Hiai, F. (1998). Logarithmic energy as an entropy functional. In Advances in differential equations and mathematical physics (Atlanta, GA, 1997) . Contemp. Math. 217 205-221. Amer. Math. Soc., Providence, RI. · Zbl 0893.15011 · doi:10.1090/conm/217/02991
[119] Popescu, I. (2009). General tridiagonal random matrix models, limiting distributions and fluctuations. Probab. Theory Related Fields 144 179-220. · Zbl 1165.82012 · doi:10.1007/s00440-008-0145-y
[120] Reed, M. and Simon, B. (1980). Methods of modern mathematical physics. I , Second ed. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York. Functional analysis. · Zbl 0459.46001
[121] Rider, B. (2003). A limit theorem at the edge of a non-Hermitian random matrix ensemble. J. Phys. A 36 3401-3409. Random matrix theory. · Zbl 1039.60037 · doi:10.1088/0305-4470/36/12/331
[122] Rider, B. (2004). Deviations from the circular law. Probab. Theory Related Fields 130 337-367. · Zbl 1071.82029 · doi:10.1007/s00440-004-0355-x
[123] Rider, B. and Silverstein, J. W. (2006). Gaussian fluctuations for non-Hermitian random matrix ensembles. Ann. Probab. 34 2118-2143. · Zbl 1122.15022 · doi:10.1214/009117906000000403
[124] Rider, B. and Virág, B. (2007). The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. IMRN 2 Art. ID rnm006, 33. · Zbl 1130.60030 · doi:10.1093/imrn/rnm006
[125] Rogers, T. (2010). Universal sum and product rules for random matrices. J. Math. Phys. 51 093304, 15. · Zbl 1309.82016 · doi:10.1063/1.3481569
[126] Rogers, T. and Castillo, I. P. (2009). Cavity approach to the spectral density of non-Hermitian sparse matrices. Phys. Rev. E 79 012101.
[127] Rudelson, M. and Vershynin, R. (2008). The Littlewood-Offord problem and invertibility of random matrices. Adv. Math. 218 600-633. · Zbl 1139.15015 · doi:10.1016/j.aim.2008.01.010
[128] Ryan, Ø. (1998). On the limit distributions of random matrices with independent or free entries. Comm. Math. Phys. 193 595-626. · Zbl 0912.60013 · doi:10.1007/s002200050340
[129] Saff, E. B. and Totik, V. (1997). Logarithmic potentials with external fields . Fundamental Principles of Mathematical Sciences 316 . Springer-Verlag Appendix B by Thomas Bloom. · Zbl 0881.31001
[130] Schehr, G. and Majumdar, S. N. (2008). Real roots of random polynomials and zero crossing properties of diffusion equation. J. Stat. Phys. 132 235-273. · Zbl 1144.82320 · doi:10.1007/s10955-008-9574-3
[131] Shepp, L. and Farahmand, K. (2010). Expected number of real zeros of a random polynomial with independent identically distributed symmetric long-tailed coefficients. Teor. Veroyatn. Primen. 55 196-204. · Zbl 1218.60044 · doi:10.1137/S0040585X97984735
[132] Shepp, L. A. and Vanderbei, R. J. (1995). The complex zeros of random polynomials. Trans. Amer. Math. Soc. 347 4365-4384. · Zbl 0841.30006 · doi:10.2307/2155041
[133] Shiffman, B. and Zelditch, S. (2003). Equilibrium distribution of zeros of random polynomials. Int. Math. Res. Not. 1 25-49. · Zbl 1006.60003 · doi:10.1155/S1073792803206073 · www.hindawi.com
[134] Shparo, D. I. and Shur, M. G. (1962). On the distribution of roots of random polynomials. Vestnik Moskov. Univ. Ser. I Mat. Meh. 1962 40-43.
[135] Shub, M. and Smale, S. (1993). Complexity of Bezout’s theorem. II. Volumes and probabilities. In Computational algebraic geometry (Nice, 1992) . Progr. Math. 109 267-285. Birkhäuser. · Zbl 0851.65031 · doi:10.1007/978-1-4612-2752-6_19
[136] Silverstein, J. W. (1994). The spectral radii and norms of large-dimensional non-central random matrices. Comm. Statist. Stochastic Models 10 525-532. · Zbl 0806.15018 · doi:10.1080/15326349408807308
[137] Śniady, P. (2002). Random regularization of Brown spectral measure. J. Funct. Anal. 193 291-313. · Zbl 1026.46056 · doi:10.1006/jfan.2001.3935
[138] Spielman, D. A. and Teng, S.-H. (2002). Smoothed analysis of algorithms. In Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) 597-606. Higher Ed. Press. · Zbl 1056.65148
[139] Spielman, D. A. and Teng, S.-H. (2003). Smoothed analysis: motivation and discrete models. In Algorithms and data structures . Lecture Notes in Comput. Sci. 2748 256-270. Springer, Berlin. · Zbl 1253.68378 · doi:10.1007/978-3-540-45078-8_23
[140] Stieltjes, T. J. (1894). Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 8 J1-J122. · JFM 25.0326.01 · doi:10.5802/afst.108
[141] Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. 81 73-205. · Zbl 0864.60013 · doi:10.1007/BF02699376 · numdam:PMIHES_1995__81__73_0 · eudml:104106
[142] Tao, T. (2011). Outliers in the spectrum of iid matrices with bounded rank perturbations. preprint arXiv: · arxiv.org
[143] Tao, T. (2011). Topics in random matrix theory. forthcoming book [ URL]. · Zbl 1256.15020
[144] Tao, T. and Vu, V. (2008). Random matrices: A general approach for the least singular value problem. preprint arXiv: · Zbl 1156.15010 · doi:10.1142/S0219199708002788 · arxiv.org
[145] Tao, T. and Vu, V. (2008). Random matrices: the circular law. Commun. Contemp. Math. 10 261-307. · Zbl 1156.15010 · doi:10.1142/S0219199708002788
[146] Tao, T. and Vu, V. (2009). From the Littlewood-Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Amer. Math. Soc. (N.S.) 46 377-396. · Zbl 1168.15018 · doi:10.1090/S0273-0979-09-01252-X
[147] Tao, T. and Vu, V. (2009). Inverse Littlewood-Offord theorems and the condition number of random discrete matrices. Ann. of Math. (2) 169 595-632. · Zbl 1250.60023 · doi:10.4007/annals.2009.169.595 · annals.math.princeton.edu
[148] Tao, T. and Vu, V. (2010). Random matrices: the distribution of the smallest singular values. Geom. Funct. Anal. 20 260-297. · Zbl 1210.60014 · doi:10.1007/s00039-010-0057-8
[149] Tao, T. and Vu, V. (2010). Random matrices: universality of ESDs and the circular law. Ann. Probab. 38 2023-2065. With an appendix by Manjunath Krishnapur. · Zbl 1203.15025 · doi:10.1214/10-AOP534
[150] Trefethen, L. N. and Embree, M. (2005). Spectra and pseudospectra . Princeton University Press, Princeton, NJ. The behavior of nonnormal matrices and operators. · Zbl 1085.15009
[151] Voiculescu, D. (1994). The analogues of entropy and of Fisher’s information measure in free probability theory. II. Invent. Math. 118 411-440. · Zbl 0820.60001 · doi:10.1007/BF01231539 · eudml:144242
[152] Voiculescu, D. V., Dykema, K. J. and Nica, A. (1992). Free random variables . CRM Monograph Series 1 . AMS A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. · Zbl 0795.46049
[153] Weyl, H. (1949). Inequalities between the two kinds of eigenvalues of a linear transformation. Proc. Nat. Acad. Sci. U. S. A. 35 408-411. · Zbl 0032.38701 · doi:10.1073/pnas.35.7.408
[154] Widom, H. (1994). Eigenvalue distribution for nonselfadjoint Toeplitz matrices. In Toeplitz operators and related topics (Santa Cruz, CA, 1992) . Oper. Theory Adv. Appl. 71 1-8. Birkhäuser. · Zbl 0809.15004 · doi:10.1007/978-3-0348-8543-0_1
[155] Wood, P. M. (2011). Universality and the circular law for sparse random matrices. preprint arXiv: · arxiv.org
[156] Zeitouni, O. and Zelditch, S. (2010). Large deviations of empirical measures of zeros of random polynomials. Int. Math. Res. Not. IMRN 20 3935-3992. · Zbl 1206.60031 · doi:10.1093/imrn/rnp233
[157] Zhan, X. (2002). Matrix inequalities . Lecture Notes in Mathematics 1790 . Springer-Verlag. · Zbl 1018.15016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.