×

zbMATH — the first resource for mathematics

Coupled electromechanical model of the heart: Parallel finite element formulation. (English) Zbl 1242.92015
Summary: A highly parallel coupled electromechanical model of the heart is presented and assessed. The parallel-coupled model is thoroughly discussed, with scalability proven up to hundreds of cores. This work focuses on the mechanical part, including the constitutive model (proposing some modifications to pre-existent models), the numerical scheme and the coupling strategy. The model is next assessed through two examples. First, the simulation of a small piece of cardiac tissue is used to introduce the main features of the coupled model and calibrate its parameters against experimental evidence. Then, a more realistic problem is solved using those parameters, with a mesh of the Oxford ventricular rabbit model. The results of both examples demonstrate the capability of the model to run efficiently in hundreds of processors and to reproduce some basic characteristic of cardiac deformation.

MSC:
92C30 Physiology (general)
92C05 Biophysics
92C10 Biomechanics
65Y05 Parallel numerical computation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nordsletten, Coupling multi-physics models to cardiac mechanics, Progress in Biophysics and Molecular Biology 104 (1-3) pp 77– (2011) · doi:10.1016/j.pbiomolbio.2009.11.001
[2] Trayanova, Whole heart modeling. Applications to cardiac electrophysiology and electromechanics, Circulation Research 108 (4) pp 113– (2011) · doi:10.1161/CIRCRESAHA.110.223610
[3] Nickerson, New developments in a strongly coupled cardiac electromechanical model, Europace 7 pp 118– (2005) · doi:10.1016/j.eupc.2005.04.009
[4] Sainte-Marie, Modeling and estimation of the cardiac electromechanical activity, Computers and Structures 84 pp 1743– (2006) · doi:10.1016/j.compstruc.2006.05.003
[5] Stevens, Ventricular mechanics in diastole: Material parameter sensitivity, Journal of Biomechanics 36 (5) pp 737– (2003) · doi:10.1016/S0021-9290(02)00452-9
[6] Göktepe, Electromechanics of the heart: A unified approach to the strongly coupled excitation-contraction problem, Computational Mechanics 45 pp 227– (2010) · Zbl 1183.78031 · doi:10.1007/s00466-009-0434-z
[7] Kerckhoffs, Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation, Annals of Biomedical Engineering 35 pp 1– (2007) · doi:10.1007/s10439-006-9212-7
[8] Nobile, An active strain electromechanical model for cardiac tissue, International Journal for Numerical Methods in Biomedical Engineering (2011) · Zbl 1242.92016
[9] Gurev, Distribution of electromechanical delay in the heart: Insights from a three-dimensional electromechanical model, Biophysical Journal 99 (3) pp 745– (2010) · doi:10.1016/j.bpj.2010.05.028
[10] Hosoi, SC ’10, in: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis pp 1– (2010) · doi:10.1109/SC.2010.5
[11] Reumann M Fitch BG Rayshubskiy A et al Strong scaling and speedup to 16,384 processors in cardiac electro mechanical simulations Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE 2009 2795 2798
[12] Vázquez, A massively parallel computational electrophysiology model of the heart, International Journal for Numerical Methods in Biomedical Engineering (2011) · Zbl 1241.92016 · doi:10.1002/cnm.1443
[13] Houzeaux, Extension of fractional step techniques for incompressible flows: The preconditioned orthomin(1) for the pressure schur complement, Computers and Fluids 44 pp 297– (2011) · Zbl 1271.76208 · doi:10.1016/j.compfluid.2011.01.017
[14] http://www.bsc.es
[15] FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Journal of Biophysics 1 pp 445– (1961) · doi:10.1016/S0006-3495(61)86902-6
[16] Fenton, Modeling wave propagation in realistic heart geometries using the phase-field method, Chaos 15 (013502) (2005) · Zbl 1080.92038
[17] Belytschko, Nonlinear Finite Elements for Continua and Structures (2000)
[18] Yin, Compressibility of perfused passive myocardium, American Journal of Physiology - Heart and Circulatory Physiology 271 (H1864-H1870) (1996)
[19] Moore, Noninvasive measurement of three-dimensional myocardial deformation with tagged magnetic resonance imaging during graded local ischemia, Journal of Cardiovascular Magnetic Resonance 1 (3) pp 207– (1999) · doi:10.3109/10976649909088333
[20] Legrice, The architecture of the heart: A data-based model, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359 (1783) pp 1217– (2001) · Zbl 0997.92022 · doi:10.1098/rsta.2001.0827
[21] Streeter, Cardiovascular System Dynamics pp 73– (1978)
[22] Dokos, Shear properties of passive ventricular myocardium, American Journal of Physiology - Heart and Circulatory Physiology 283 (6) pp H2650– (2002) · doi:10.1152/ajpheart.00111.2002
[23] Watanabe, Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method, Biophysical Journal 87 (3) pp 2074– (2004) · doi:10.1529/biophysj.103.035840
[24] Veress, Normal and pathological ncat image and phantom data based on physiologically realistic left ventricle finite-element models, IEEE Transactions on Medical Imaging 25 (12) pp 1604– (2006) · doi:10.1109/TMI.2006.884213
[25] Dorri, A finite element model of the human left ventricular systole, Computer Methods in Biomechanics and Biomedical Engineering 9 (5) pp 319– (2006) · doi:10.1080/10255840600960546
[26] Kerckhoffs, Computational methods for cardiac electromechanics, Proceedings of the IEEE 94 (4) pp 769– (2006) · doi:10.1109/JPROC.2006.871772
[27] Costa, Modelling cardiac mechanical properties in three dimensions, Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical and engineering sciences 359 (1783) pp 1233– (2001) · Zbl 0994.92013 · doi:10.1098/rsta.2001.0828
[28] Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering (2000) · Zbl 0980.74001
[29] Holzapfel, Constitutive modelling of passive myocardium: A structurally based framework for material characterization, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367 (1902) pp 3445– (2009) · Zbl 1185.74060 · doi:10.1098/rsta.2009.0091
[30] Usyk, Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle, Journal of Elasticity 61 pp 143– (2000) · Zbl 0974.92002 · doi:10.1023/A:1010883920374
[31] Yin, Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading, Journal of Biomechanics 20 (6) pp 577– (1987) · doi:10.1016/0021-9290(87)90279-X
[32] Hunter, Computational Electromechanics of the Heart pp 346– (1997) · Zbl 0905.92005
[33] Rice, Approaches to modeling crossbridges and calcium-dependent activation in cardiac muscle, Progress in Biophysics and Molecular Biology 85 (2-3) pp 179– (2004) · doi:10.1016/j.pbiomolbio.2004.01.011
[34] Humphrey, Cardiovascular Solid Mechanics. Cells, Tissues, and Organs (2001)
[35] Holzapfel, Computational Biomechanics of Soft Biological Tissue, Volume 2 of Encyclopedia Of Computational Mechanics pp 604– (2004)
[36] Hunter, Modelling the mechanical properties of cardiac muscle, Progress in Biophysics and Molecular Biology 69 pp 289– (1998) · doi:10.1016/S0079-6107(98)00013-3
[37] http://www.cs.ox.ac.uk/chaste
[38] Bishop, Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function, American Journal of Physiology - Heart and Circulatory Physiology 298 (2) pp H699– (2010) · doi:10.1152/ajpheart.00606.2009
[39] Moore, Three-dimensional systolic strain patterns in the normal human left ventricle: Characterization with tagged mr imaging, Radiology 214 (2) pp 453– (2000) · doi:10.1148/radiology.214.2.r00fe17453
[40] Rice, Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations, Biophysical journal 95 (5) pp 2368– (2008) · doi:10.1529/biophysj.107.119487
[41] Trayanova, Computer simulations of cardiac defibrillation: A look inside the heart, Computing and Visualization in Science 4 pp 259– (2002) · Zbl 0997.92026 · doi:10.1007/s00791-002-0082-8
[42] Trayanova, Cardiac electromechanical models: From cell to organ, Frontiers in Physiology 2 (0) (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.