×

zbMATH — the first resource for mathematics

Passivity of uncertain neural networks with both leakage delay and time-varying delay. (English) Zbl 1242.92005
Summary: The passivity problem is investigated for a class of uncertain neural networks with leakage and time-varying delays as well as generalized activation functions. By constructing appropriate Lyapunov-Krasovskii functionals, and employing the Newton-Leibniz formulation and free-weighting matrix method, several delay-dependent criteria for checking the passivity of the addressed neural networks are established by linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. Two examples with simulations are given to show the effectiveness and less conservatism of the proposed criteria.

MSC:
92B20 Neural networks for/in biological studies, artificial life and related topics
68T05 Learning and adaptive systems in artificial intelligence
15A45 Miscellaneous inequalities involving matrices
34K60 Qualitative investigation and simulation of models involving functional-differential equations
65C20 Probabilistic models, generic numerical methods in probability and statistics
Software:
LMI toolbox; Matlab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, T.: Global exponential stability of delayed Hopfield neural networks. Neural Netw. 14(8), 977–980 (2001) · Zbl 02022167 · doi:10.1016/S0893-6080(01)00059-4
[2] Arik, S.: An analysis of exponential stability of delayed neural networks with time varying delays. Neural Netw. 17(7), 1027–1031 (2004) · Zbl 1068.68118 · doi:10.1016/j.neunet.2004.02.001
[3] Cao, J., Song, Q.: Stability in Cohen–Grossberg-type bidirectional associative memory neural networks with time-varying delays. Nonlinearity 19(7), 1601–1617 (2006) · Zbl 1118.37038 · doi:10.1088/0951-7715/19/7/008
[4] Liu, Y., Wang, Z., Liu, X.: Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Netw. 19(5), 667–675 (2006) · Zbl 1102.68569 · doi:10.1016/j.neunet.2005.03.015
[5] Wang, Z., Liu, Y., Liu, X.: State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural Netw. 22(1), 41–48 (2009) · Zbl 1335.93125 · doi:10.1016/j.neunet.2008.09.015
[6] Akhmet, M., Aru─časlan, D., Yilmaz, E.: Stability analysis of recurrent neural networks with piecewise constant argument of generalized type. Neural Netw. 23(7), 805–811 (2010) · Zbl 1400.34112 · doi:10.1016/j.neunet.2010.05.006
[7] Souza, F., Palhares, R.: Interval time-varying delay stability for neural networks. Neurocomputing 73(13–15), 789–2792 (2010)
[8] Ozcan, N., Arik, S.: A new sufficient condition for global robust stability of bidirectional associative memory neural networks with multiple time delays. Nonlinear Anal., Real World Appl. 10(5), 3312–3320 (2009) · Zbl 1162.92005 · doi:10.1016/j.nonrwa.2008.07.001
[9] Park, J.: Further note on global exponential stability of uncertain cellular neural networks with variable delays. Appl. Math. Comput. 188(1), 850–854 (2007) · Zbl 1126.34376 · doi:10.1016/j.amc.2006.10.036
[10] Singh, V.: New LMI-based criteria for global robust stability of delayed neural networks. Appl. Math. Model. 34(10), 2958–2965 (2010) · Zbl 1201.93099 · doi:10.1016/j.apm.2010.01.005
[11] Gau, R., Lien, C., Hsieh, J.: Novel stability conditions for interval delayed neural networks with multiple time-varying delays. Int. J. Innov. Comput., Inf. Control 7(1), 433–444 (2011)
[12] Niculescu, S., Lozano, R.: On the passivity of linear delay systems. IEEE Trans. Autom. Control 46(3), 460–464 (2001) · Zbl 1056.93610 · doi:10.1109/9.911424
[13] Fridman, E., Shaked, U.: On delay-dependent passivity. IEEE Trans. Autom. Control 47(4), 664–669 (2002) · Zbl 1364.93370 · doi:10.1109/9.995046
[14] Gao, H., Chen, T., Chai, T.: Passivity and passification for networked control systems. SIAM J. Control Optim. 46(4), 1299–1322 (2007) · Zbl 1140.93425 · doi:10.1137/060655110
[15] Liang, J., Wang, Z., Liu, X.: Robust passivity and passification of stochastic fuzzy time-delay systems. Inf. Sci. 180(9), 1725–1737 (2010) · Zbl 1282.93159 · doi:10.1016/j.ins.2010.01.003
[16] Liang, J., Wang, Z., Liu, X.: On passivity and passification of stochastic fuzzy systems with delays: The discrete-time case. IEEE Trans. Syst. Man Cybern. 40(3), 964–969 (2010) · doi:10.1109/TSMCB.2009.2033142
[17] Li, C., Liao, X.: Passivity analysis of neural networks with time delay. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 52(8), 471–475 (2005) · doi:10.1109/TCSII.2005.849023
[18] Park, J.: Further results on passivity analysis of delayed cellular neural networks. Chaos Solitons Fractals 34(5), 1546–1551 (2007) · Zbl 1152.34380 · doi:10.1016/j.chaos.2005.04.124
[19] Lou, X., Cui, B.: Passivity analysis of integro-differential neural networks with time-varying delays. Neurocomputing 70(4–6), 1071–1078 (2007) · doi:10.1016/j.neucom.2006.09.007
[20] Lu, C., Tsai, H., Su, T., Tsai, J., Liao, C.: A delay-dependent approach to passivity analysis for uncertain neural networks with time-varying delayed. Neural Process. Lett. 27(3), 237–246 (2008) · doi:10.1007/s11063-008-9072-2
[21] Li, H., Gao, H., Shi, P.: New passivity analysis for neural networks with discrete and distributed delays. IEEE Trans. Neural Netw. 21(11), 1842–1847 (2010) · doi:10.1109/TNN.2010.2059039
[22] Zhang, Z., Mou, S., Lam, J., Gao, H.: New passivity criteria for neural networks with time-varying delay. Neural Netw. 22(7), 864–868 (2009) · Zbl 1338.93291 · doi:10.1016/j.neunet.2009.05.012
[23] Chen, Y., Li, W., Bi, W.: Improved results on passivity analysis of uncertain neural networks with time-varying discrete and distributed delays. Neural Process. Lett. 30(2), 155–169 (2009) · Zbl 05802905 · doi:10.1007/s11063-009-9116-2
[24] Xu, S., Zheng, W., Zou, Y.: Passivity analysis of neural networks with time-varying delays. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 56(4), 325–329 (2009) · doi:10.1109/TCSII.2009.2015399
[25] Chen, B., Li, H., Lin, C., Zhou, Q.: Passivity analysis for uncertain neural networks with discrete and distributed time-varying delays. Phys. Lett. A 373(14), 1242–1248 (2009) · Zbl 1228.92002 · doi:10.1016/j.physleta.2009.01.047
[26] Zhu, S., Shen, Y., Chen, G.: Exponential passivity of neural networks with time-varying delay and uncertainty. Phys. Lett. A 375(2), 136–142 (2010) · Zbl 1241.82061 · doi:10.1016/j.physleta.2010.10.045
[27] Balasubramaniam, P., Nagamani, G., Rakkiyappan, R.: Global passivity analysis of interval neural networks with discrete and distributed delays of neutral type. Neural Process. Lett. 32(2), 109–130 (2010) · Zbl 05802936 · doi:10.1007/s11063-010-9147-8
[28] Chen, Y., Wang, H., Xue, A., Lu, R.: Passivity analysis of stochastic time-delay neural networks. Nonlinear Dyn. 61(1–2), 71–82 (2010) · Zbl 1204.93126 · doi:10.1007/s11071-009-9632-7
[29] Zeng, H., He, Y., Wu, M., Xiao, S.: Passivity analysis for neural networks with a time-varying delay. Neurocomputing 74(5), 730–734 (2011) · Zbl 05849795 · doi:10.1016/j.neucom.2010.09.020
[30] Fu, J., Ma, T., Zhang, Q.: On passivity analysis for stochastic neural networks with interval time-varying delay. Neurocomputing 73(4–6), 795–801 (2010) · Zbl 05721275 · doi:10.1016/j.neucom.2009.10.010
[31] Song, Q., Wang, Z.: New results on passivity analysis of uncertain neural networks with time-varying delays. Int. J. Comput. Math. 87(3), 668–678 (2010) · Zbl 1186.68392 · doi:10.1080/00207160802166507
[32] Gopalsamy, K.: Leakage delays in BAM. J. Math. Anal. Appl. 325(2), 1117–1132 (2007) · Zbl 1116.34058 · doi:10.1016/j.jmaa.2006.02.039
[33] Li, C., Huang, T.: On the stability of nonlinear systems with leakage delay. J. Franklin Inst. 346(4), 366–377 (2009) · Zbl 1166.93367 · doi:10.1016/j.jfranklin.2008.12.001
[34] Peng, S.: Global attractive periodic solutions of BAM neural networks with continuously distributed delays in the leakage terms. Nonlinear Anal., Real World Appl. 11(3), 2141–2151 (2010) · Zbl 1239.34081 · doi:10.1016/j.nonrwa.2009.06.004
[35] Li, X., Fu, X., Balasubramaniam, P., Rakkiyappan, R.: Existence, uniqueness and stability analysis of recurrent neural networks with time delay in the leakage term under impulsive perturbations. Nonlinear Anal., Real World Appl. 11(5), 4092–4108 (2010) · Zbl 1205.34108 · doi:10.1016/j.nonrwa.2010.03.014
[36] Li, X., Cao, J.: Delay-dependent stability of neural networks of neutral type with time delay in the leakage term. Nonlinearity 23(7), 1709–1726 (2010) · Zbl 1196.82102 · doi:10.1088/0951-7715/23/7/010
[37] Balasubramaniam, P., Nagamani, G., Rakkiyappan, R.: Passivity analysis for neural networks of neutral type with Markovian jumping parameters and time delay in the leakage term. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4422–4437 (2011) · Zbl 1219.92001 · doi:10.1016/j.cnsns.2011.03.028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.