×

zbMATH — the first resource for mathematics

Fermionic fields in the functional approach to classical field theory. (English) Zbl 1242.81112

MSC:
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T08 Constructive quantum field theory
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
46L60 Applications of selfadjoint operator algebras to physics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1007/978-3-642-02780-2 · Zbl 1178.81003
[2] Berezin F. A., The Method of Second Quantization (1966) · Zbl 0151.44001
[3] DOI: 10.1142/S0129055X08003237 · Zbl 1149.81017
[4] DOI: 10.1007/s002200050004 · Zbl 1040.81067
[5] DOI: 10.1007/BF02099626 · Zbl 0923.58052
[6] DOI: 10.1007/BF01210830 · Zbl 0576.58002
[7] DOI: 10.1007/BF00417460 · Zbl 0587.58013
[8] DOI: 10.1088/0305-4470/30/8/017 · Zbl 0949.70016
[9] DOI: 10.1142/S0129055X09003864 · Zbl 1231.81062
[10] DOI: 10.1007/PL00005563 · Zbl 1019.81041
[11] DOI: 10.1007/s00220-003-0968-4 · Zbl 1049.70017
[12] Epstein H., Ann. Inst. H. Poincaré A 19 pp 211–
[13] DOI: 10.1063/1.1669058 · Zbl 1068.81048
[14] DOI: 10.1103/PhysRevD.10.3235
[15] Hogbe-Nlend H., Notes de Mathemática 79, in: Nuclear and Conuclear Spaces: Introductory Courses on Nuclear and Conuclear Spaces in the Light of the Duality ”Topology-Bornology” (1981) · Zbl 0467.46001
[16] DOI: 10.1090/S0273-0979-1982-15004-2 · Zbl 0499.58003
[17] Hörmander L., The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis (2003)
[18] DOI: 10.1016/0034-4877(93)90031-9 · Zbl 0796.70013
[19] DOI: 10.1007/BF01942330 · Zbl 0464.58006
[20] DOI: 10.1007/978-3-322-90559-8_2
[21] Komatsu H., J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 pp 653–
[22] Monterde J., Ann. Inst. H Poincaré 56 pp 3–
[23] DOI: 10.1090/conm/132/1188457
[24] DOI: 10.1088/0305-4470/36/18/305 · Zbl 1119.58300
[25] DOI: 10.1098/rspa.1952.0158 · Zbl 0048.44606
[26] DOI: 10.1007/978-3-642-87665-3
[27] Roepstorff G., Pfadintegrale in der Quantenphysik (1991) · Zbl 0769.60103
[28] DOI: 10.1142/S0129055X10003990 · Zbl 1216.81113
[29] DOI: 10.1142/S0219887808003247 · Zbl 1166.70018
[30] DOI: 10.1142/S0219887807002582 · Zbl 1142.58005
[31] DOI: 10.1142/7189
[32] DOI: 10.1007/978-3-642-57750-5
[33] DOI: 10.1142/S0129055X95000463 · Zbl 0839.58043
[34] Schwartz L., Théorie des Distributions (1950)
[35] DOI: 10.5802/aif.68 · Zbl 0089.09601
[36] DOI: 10.5802/aif.77 · Zbl 0089.09801
[37] DOI: 10.1016/0003-4916(58)90015-0 · Zbl 0078.44303
[38] de Witt B., The Global Approach to Quantum Field Theory I, II (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.