×

A numerical study of air-vapor-heat transport through textile materials with a moving interface. (English) Zbl 1242.80003

The authors discuss heat and moisture transfer in three-layer porous clothing assemblies (a thick porous fibrous batting sandwiched by two thin covers). Numerical simulations are carried out by the splitting finite difference method and the finite volume method. Results for vapour concentration, air concentration, temperature and water content are given.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76T30 Three or more component flows
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

IIMPACK
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Choudhary, M. K.; Karki, K. C.; Patankar, S. V., Mathematical modeling of heat transfer, condensation, and cappilary flow in porous insulation on a cold pipe, Int. J. Heat Mass Transfer, 47, 5629-5638 (2004) · Zbl 1121.76486
[2] Fan, J.; Luo, Z.; Li, Y., Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation, Int. J. Heat Mass Transfer, 43, 2989-3000 (2000) · Zbl 0969.76085
[3] Foss, W. R.; Bronkhorst, C. A.; Bennett, K. A., Simultaneous heat and mositure transport in paper sheets during moisture sorption from humid air, Int. J. Heat Mass Transfer, 46, 2875-2886 (2002) · Zbl 1049.76622
[4] Henrique, G.; Santos, D.; Mendes, N., Combined heat, air and moisture (HAM) transfer model for porous building materials, J. Build. Phys., 32, 203-220 (2009)
[5] Le, C. V.; Ly, N. G.; Postle, R., Heat and Moisture Transfer in Textile Assemblies, Text. Res. J., 65, 203-212 (1995)
[6] Cheng, A.; Wang, H., An error estimate on a Galerkin method for modeling heat and moisture transfer in fibrous insulation, Numer. Methods Partial Differential Equations, 24, 504-517 (2008) · Zbl 1132.76031
[7] Fan, J.; Cheng, X.; Wen, X.; Sun, W., An improved model of heat and moisture transfer with phase change and mobile condensates in fibrous insulation and comparison with experimental results, Int. J. Heat Mass Transfer, 47, 2343-2352 (2004)
[8] Huang, H.; Ye, C.; Sun, W., Moisture transport in fibrous clothing assemblies, J. Eng. Math., 61, 35-54 (2008) · Zbl 1138.76063
[9] Li, B.; Sun, W.; Wang, Y., Global existence of weak solution to the heat and moisture transport system in fibrous porous media, J. Differ. Equ., 249, 2618-2642 (2010) · Zbl 1207.35181
[10] Ye, C.; Huang, H.; Fan, J.; Sun, W., Numerical study of heat and moisture transfer in textile materials by a finite volume method, Commun. Comput. Phys., 4, 929-948 (2008) · Zbl 1364.76122
[11] Ye, C.; Li, B.; Sun, W., Quasi-steady state and steady state models for heat and moisture transport in textile assemblies, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466, 2875-2896 (2010) · Zbl 1211.76125
[12] He, X.; Lin, T.; Lin, Y., Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int. J. Numer. Anal. & Modeling, 8, 284-301 (2011) · Zbl 1211.65155
[13] LeVeque, R. J.; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 1019-1044 (1994) · Zbl 0811.65083
[14] Li, Z.; Ito, K., The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (2006), SIAM
[15] Sethian, J., A Level Set Methods and Fast Marching Methods (1999), Cambridge University Press · Zbl 0929.65066
[16] Zhu, S.; Yuan, G.; Sun, W., Convergence and stability of explicit/implicit schemes for parabolic equations with discontinuous coefficients, Int. J. Numer. Anal. & Modeling, 1, 131-146 (2004) · Zbl 1075.65116
[17] Huang, W.; Sun, W., Variational mesh adaptation II: error estimates and monitor functions, J. Comput. Phys., 184, 619-648 (2003) · Zbl 1018.65140
[18] Tang, H.; Tang, T., Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal., 41, 487-515 (2003) · Zbl 1052.65079
[19] Li, Z., Immersed interface method for moving interface problems, Numer. Algorithms., 14, 269-293 (1994) · Zbl 0886.65096
[20] Li, Z.; Lin, T.; Lin, Y.; Rogers, R. C., An immersed finite element space and its approximation capability, Numer. Methods Partial Differential Equations, 20, 338-367 (2004) · Zbl 1057.65085
[21] Bao, G.; Sun, W., A Fast algorithm for electromagnetic scattering from a large cavity, SIAM J. Sci. Comput., 27, 553-574 (2005) · Zbl 1089.78024
[22] Meyer, G. H., On a free interface problem for linear ordinary differential equations and the one-phase Stefan problem, Numer. Math., 16, 248-267 (1970) · Zbl 0221.65148
[23] Han, H.; Wu, X., A fast numerical method for the Black-Scholes equation of American options, SIAM J. Numer. Anal., 41, 2081-2095 (2003) · Zbl 1130.91336
[24] Fan, J.; Cheng, X.; Chen, Y. S., An experimental investigation of moisture absoption and condensation in fibrous insulations under low temperature, Exp. Therm. Fluid Sci., 27, 723-729 (2002)
[25] Jones, F. E., Evaporation of Water (1992), Lewis Publishers Inc.: Lewis Publishers Inc. Michigan, pp. 25-43
[26] Gupta, S. G., The Classical Stefan Problem Basic Concepts, Modelling and Analysis, vol. 45 (2003), Elsevier
[27] Mori, M., A finite element method for solving the two phase Stefan problem in one space dimension, RIMS, 13, 723-753 (2008) · Zbl 0378.35034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.