zbMATH — the first resource for mathematics

Lattice Boltzmann simulation of cerebral artery hemodynamics. (English) Zbl 1242.76271
Summary: A hemodynamics analysis approach that combines the level-set method for medical imaging processing and the Lattice Boltzmann method for flow simulation with patient-specific cerebral vasculature geometry is presented. The flow solver is validated by simulating a bent duct flow and is then applied to investigate blood flow in actual cerebral artery models. It is demonstrated that this approach is effective in studying complex hemodynamic flows.

76M28 Particle methods and lattice-gas methods
76Z05 Physiological flows
92C35 Physiological flow
Full Text: DOI
[1] Gibbons, G.H.; Dzau, V.J., The emerging concept of vascular remodeling, N engl J med, 330, 20, 1431-1438, (1994)
[2] Kondo, S.; Hashimoto, N.; Kikuchi, H.; Hazama, F.; Nagata, I.; Kataoka, H., Cerebral aneurysm arising at nonbranching sites, Stroke, 28, 398-404, (1997)
[3] Malek, A.M.; Alper, S.L.; Izumo, S., Hemodynamic shear stress and its role in atherosclerosis, Jama, 282, 21, 2035-2042, (1999)
[4] Ferguson, G.G., Physical factors in the initiation, growth, and rupture of human intracranial saccular aneurysms, J neurosurg, 37, 666-677, (1972)
[5] Parmentier, E.M.; Morton, W.A.; Petschek, H.E., Platelet aggregate formation in a region of separated blood flow, Phys fluids, 20, 2012-2021, (1977)
[6] Ku, D.N.; Giddens, D.P.; Zarins, C.K., Pulsatile flow and atherosclerosis in the human carotid bifurcation – positive correlation between plaque location and low and oscillating shear – stress, Arteriosclerosis, 5, 3, 293-302, (1985)
[7] Ku, D.N., Blood flow in arteries, Annu rev fluid mech, 29, 399-434, (1997)
[8] Taylor, C.A.; Hughes, T.J.R.; Zarins, C.K., Finite element modeling of blood flow in arteries, Comput methods appl mech eng, 158, 1-2, 155-196, (1998) · Zbl 0953.76058
[9] Berger, S.A.; Jou, L.D., Flows in stenotic vessels, Annu rev fluid mech, 32, 347-382, (2000) · Zbl 0989.76096
[10] Taylor, C.A., Experimental and computational methods in cardiovascular fluid mechanics, Annu rev fluid mech, 36, 197-231, (2004) · Zbl 1125.76414
[11] Cebral, J.R.; Castro, M.A.; Appanaboyina, A.; Putman, C.M.; Millan, D.; Frangi, A.F., Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity, IEEE trans med imaging, 24, 4, 457-467, (2005)
[12] Oshima, M.; Torii, R.; Kobayashi, T.; Taniguchi, N.; Takagi, K., Finite element simulation of blood flow in the cerebral artery, Comput methods appl mech eng, 191, 661-671, (2001) · Zbl 0999.76081
[13] He, X.; Venugopal, P.; Cebral, J.R.; Schmitt, H.; Valentino, D.J., Reproducibility of brain hemodynamic simulations: an inter-solver comparison, Proc SPIE, 6143, (2006)
[14] Ferziger, J.H.; Peric, M., Computational methods for fluid dynamics, (2001), Springer Berlin · Zbl 0869.76003
[15] Osher, S.J.; Sethian, J., Fronts propagating with curvature dependent speed: algorithm based on hamilton – jacobi formulations, J comput phys, 79, 12-49, (1988) · Zbl 0659.65132
[16] Osher, S.J.; Fedkiw, R.P., Level set methods and dynamic implicit surfaces, (2002), Springer Berlin
[17] Chen, S.; Doolen, G.D., Lattice Boltzmann method for fluid flows, Ann rev fluid mech, 30, 329-364, (1997) · Zbl 1398.76180
[18] Succi, S., The lattice Boltzmann equation for fluid dynamics and beyond, (2001), Oxford University Press Oxford · Zbl 0990.76001
[19] Available from: http://www.medical.philips.com.
[20] Moore, J.A.; Steinman, D.A.; Ethier, C.R., Computational blood flow modeling: errors associated with reconstructing finite element models from magnetic resonance images, J biomech, 31, 2, 179-184, (1998)
[21] Lorensen, W.; Cline, H., Marching cube: a high resolution 3D surface reconstruction algorithm, Comput graph, 24, 4, 163-169, (1987)
[22] Wolf-Gladrow, D.A., Lattice – gas cellular automata and lattice Boltzmann models: an introduction, (2000), Springer Berlin · Zbl 0999.82054
[23] He, X.; Luo, L., Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys rev E, 56, 6, 6811-6817, (1997)
[24] Krafczyk, M.; Cerrolaza, M.; Schulz, M.; Rank, E., Analysis of 3D transient blood flow passing through an artificial aortic valve by lattice-Boltzmann methods, J biomech, 31, 453-462, (1998)
[25] Hirabayashi, M.; Ohta, M.; Rufenacht, D.A.; Chopard, B., Characterization of flow reduction properties in an aneurysm due to a stent, Phys rev E, 68, 021918, (2003)
[26] Ouared, R.; Chopard, B., Lattice Boltzmann simulations of blood flow: non-Newtonian rheology and clotting process, J stat phys, 121, 1/2, 209-221, (2005) · Zbl 1108.76089
[27] Artoli, A.M.; Hoekstra, A.G.; Sloot, P.M.A., Mesoscopic simulations of systolic flow in the human abdominal aorta, J biomech, 39, 873-884, (2006) · Zbl 1099.76051
[28] Chen, C.; Chen, H.; Freed, D.; Shock, R.; Staroselsky, I.; Zhang, R., Simulation of blood flow using extended Boltzmann kinetic approach, Physica A, 362, 174-181, (2006)
[29] Bhatnagar, P.L.; Gross, E.P.; Krook, M., A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems, Phys. rev., 94, 3, 511-525, (1954) · Zbl 0055.23609
[30] Qian, Y.; D’Humieres, D.; Lallemand, P., Lattice BGK models for navier – stokes equation, Europhys lett, 17, 6, 479-484, (1992) · Zbl 1116.76419
[31] D’Humieres, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L., Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos trans roy soc lond A, 360, 437-451, (2001) · Zbl 1001.76081
[32] Chen, H., Volumetric formulation of the lattice Boltzmann method for fluid dynamics: basic concept, Phys rev E, 58, 3, 3955-3963, (1998)
[33] Filippova, O.; Hanel, D., Grid refinement for lattice BGK models, J comput phys, 147, 219-228, (1998) · Zbl 0917.76061
[34] Bouzidi, M.; Firdaouss, M.; Lallemand, P., Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys fluids, 13, 11, 3452-3459, (2001) · Zbl 1184.76068
[35] Mei, R.; Luo, L.; Shyy, W., An accurate curved boundary treatment in lattice Boltzmann method, J comput phys, 155, 307-330, (1999) · Zbl 0960.82028
[36] Pan, C.; Luo, L.; Miller, C.T., An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Comput fluids, 35, 898-909, (2006) · Zbl 1177.76323
[37] Humphrey, J.A.C.; Taylor, A.M.K.; Whitelaw, J.H., Laminar flow in a square duct of strong curvature, J fluid mech, 83, 3, 509-527, (1977) · Zbl 0367.76026
[38] Yuan, L., Comparison of implicit multigrid schemes for three-dimensional incompressible flows, J comput phys, 177, 134-155, (2002) · Zbl 1027.76032
[39] Available from: http://www.amiravis.com.
[40] Available from: http://www.openfoam.com.
[41] Castro, M.A.; Putman, C.M.; Cebral, J.R., Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics, Am J neuroradiol, 27, 8, 1703-1709, (2006)
[42] Available from: http://www.glaros.dtc.umn.edu/gkhome/views/metis.
[43] Cebral, J.R.; Castro, M.A.; Burgess, J.E.; Pergolizzi, R.S.; Sheridan, M.J.; Putman, C.M., Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models, Am J neuroradiol, 26, 10, 2550-2559, (2005)
[44] Venugopal P, He X, Schmitt H. To smooth or not to smooth? Philips Internal Report, 2006.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.