×

zbMATH — the first resource for mathematics

A new 3D parallel SPH scheme for free surface flows. (English) Zbl 1242.76270
Summary: We propose a new robust and accurate SPH scheme, able to track correctly complex three-dimensional non-hydrostatic free surface flows and, even more important, also able to compute an accurate and little oscillatory pressure field. It uses the explicit third order TVD Runge-Kutta scheme in time, following [C.-W. Shu and S. Osher, J. Comput. Phys. 77, No. 2, 439–471 (1988; Zbl 0653.65072)] together with the new key idea of introducing a monotone upwind flux for the density equation, thus removing any artificial viscosity term. For the discretization of the velocity equation, the non-diffusive central flux has been used. A new flexible approach to impose the boundary conditions at solid walls is also proposed. It can handle any moving rigid body with arbitrarily irregular geometry. It does neither produce oscillations in the fluid pressure in proximity of the interfaces, nor does it have a restrictive impact on the stability condition of the explicit time stepping method, unlike the repellent boundary forces of [J.J. Monaghan, J. Comput. Phys. 110, No. 2, 399–406 (1994; Zbl 0794.76073)]. To asses the accuracy of the new SPH scheme, a 3D mesh-convergence study is performed for the strongly deforming free surface in a 3D dam-break and impact-wave test problem providing very good results.

MSC:
76M28 Particle methods and lattice-gas methods
76D27 Other free boundary flows; Hele-Shaw flows
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdolmaleki K, Thiagarajan KP, Morris-Thomas MT. Simulation of the dam break problem and impact flows using a Navier-Stokes solver. In: 15th Australasian fluid mechanics conference; 2004. p. 1-4.
[2] Balsara, D.S., Von Neumann stability analysis of smoothed particle hydrodynamics – suggestions for optimal algorithms, J comput phys, 121, 357-372, (1995) · Zbl 0835.76070
[3] Batchelor, G.K., An introduction to fluid mechanics, (1974), Cambridge University Press Cambridge · Zbl 0152.44402
[4] Belytschko, T.; Krongauz, Y.; Dolbow, J.; Gerlach, C., On the completeness of mesh free particle methods, Int J numer methods eng, 43, 785-819, (1998) · Zbl 0939.74076
[5] Benz, W.; Asphaug, E., Simulations of brittle solids using smooth particle hydrodynamics, Comput phys commun, 87, 253-265, (1995) · Zbl 0918.73335
[6] Colagrossi, A.; Landrini, M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J comput phys, 191, 448-475, (2003) · Zbl 1028.76039
[7] Dumbser, M.; Enaux, C.; Toro, E.F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J comput phys, 227, 3971-4001, (2008) · Zbl 1142.65070
[8] Dumbser, M.; Käser, M., Arbitrary high order finite volume schemes for seismic wave propagation on unstructured meshes in 2D and 3D, Geophys J int, 171, 665-694, (2007)
[9] Dumbser, M.; Käser, M.; A Titarev, V.; Toro, E.F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J comput phys, 226, 204-243, (2007) · Zbl 1124.65074
[10] Español, P.; Revenga, M., Smoothed dissipative particle dynamics, Phys rev E, 67, 026705, (2003)
[11] Ferrari, A.; Dumbser, M.; Toro, E.F.; Armanini, A., A new stable version of the SPH method in Lagrangian coordinates, Commun comput phys, 4, 378-404, (2008) · Zbl 1364.76175
[12] Soares Frazão S, Sillen X, Zech Y. Dam-break flow through sharp bends – physical model and 2D Boltzmann model validation. In: Proceedings of the CADAM meeting, Wallingford, United Kingdom, 2 and 3 March 1998, Commission Europenne, Bruxelles; 1999. p. 151-69.
[13] Gingold, R.A.; Monaghan, J.J., Smooth particle hydrodynamics: theory and application to non-spherical stars, Month notices roy astron soc, 181, 375-389, (1977) · Zbl 0421.76032
[14] Godunov, S.K., Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics, Sbornik – math USSR, 47, 271-306, (1959) · Zbl 0171.46204
[15] Johnson, G.R.; Beissel, S.R., Normalized smoothing functions for SPH impact computations, Int J numer methods eng, 35, 2725-2741, (1998) · Zbl 0880.73076
[16] Karypis, G.; Kumar, V., Multilevel k-way partitioning scheme for irregular graphs, J parallel distribut comput, 96-129, (1998)
[17] Libersky, L.D.; Petschek, A.G., Smooth particle hydrodynamics with strength of materials, (), 248-257 · Zbl 0791.76066
[18] Libersky, L.D.; Petschek, A.G.; Carney, T.C.; Hipp, J.R.; Allahadi, F.A., High strain Lagrangian hydrodynamics, J comput phys, 109, 67-75, (1993) · Zbl 0791.76065
[19] Liou, M.-S.; Steffen, C., A new flux splitting scheme, J comput phys, 107, 23-39, (1993) · Zbl 0779.76056
[20] Lucy, L.B., A numerical approach to the testing of the fission hypothesis, Astron J, 82, 1013-1024, (1977)
[21] Mohammadian, A.; Le Roux, D.Y., Simulation of shallow flows over variable topographies using unstructured grids, Int J numer methods fluids, 52, 473-498, (2006) · Zbl 1254.76105
[22] Monaghan, J.J., Particle methods for hydrodynamics, Comput phys rep, 3, 71-124, (1985)
[23] Monaghan, J.J., Simulating free surface flows with SPH, J comput phys, 110, 399-406, (1994) · Zbl 0794.76073
[24] Monaghan, J.J., SPH without a tensile instability, J comput phys, 159, 290-311, (2000) · Zbl 0980.76065
[25] Monaghan, J.J., Smoothed particle hydrodynamics, Rep progr phys, 68, 1703-1759, (2005)
[26] Monaghan, J.J.; Lattanzio, J.C., A refined particle method for astrophysical problems, Astron astrophys, 149, 135-143, (1985) · Zbl 0622.76054
[27] Ben Moussa, B., On the convergence of SPH method for scalar conservation laws with boundary conditions, Method appl anal, 13, 29-62, (2006) · Zbl 1202.65121
[28] Ben Moussa, B.; Lanson, N.; Vila, J.P., Convergence of meshless methods for conservations laws: applications to Euler equations, Int ser numer math, 129, 31-40, (1999) · Zbl 0930.65102
[29] Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P., Two-dimensional SPH simulations of wedge water entries, J comput phys, 213, 803-822, (2006) · Zbl 1088.76056
[30] Ritter, A., Die fortpflanzung der wasserwellen, VDI zeitschrift, 36, 947-954, (1892)
[31] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J comput phys, 89, 439-471, (1988) · Zbl 0653.65072
[32] Swegle JW, Attaway SW, Heinstein MW, Mello FJ, Hicks DL. An analysis of smoothed particle hydrodynamics, technical report SAND93-2513, Sandia; 1994.
[33] Vila, J.P., On particle weighted methods and smooth particle hydrodynamics, Math model methods appl sci, 9, 161-209, (1999) · Zbl 0938.76090
[34] Zhou ZQ, Kat JOD, Buchner B.. A nonlinear 3D approach to simulate green water dynamics on deck. In: Seventh international conference on numerical ship hydrodynamics; 1999. p. 1-4.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.