×

Advances and challenges of applied large eddy simulation. (English) Zbl 1242.76073

Summary: Large-eddy simulation has become one of the most promising and successful methodology that concerns turbulent flows. It is reaching a level of maturity that brings this approach to the mainstream of engineering and industrial computations, while it opens new opportunities and brings new challenges for further progress. These advances and challenges, in the framework of industrial applications, have been the subject of a discussion meeting held at the Royal Society that brought together leading LES experts and industrial practitioners. The outcome of this discussion meeting is reported in a recent special issue 367 of Philosophical Transactions of the Royal Society A 2009 (see Zbl 1185.76719; Zbl 1185.76734; Zbl 1185.76720; Zbl 1185.86012; Zbl 1185.76724; Zbl 1185.76725; Zbl 1185.76718; Zbl 1185.76726; Zbl 1185.76722; Zbl 1185.76840; Zbl 1185.76004; Zbl 1185.76721; Zbl 1185.76730), and is thoroughly reviewed in this article. Advances and challenges of LES applied in industrial applications are concurrently reviewed and further discussed.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M99 Basic methods in fluid mechanics
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tucker, P. G.; Lardeau, S., Introduction: applied large eddy simulation, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2809-2818 (2009) · Zbl 1185.76730
[2] Hutton, A. G., The emerging role of large eddy simulation in industrial practice: challenges and opportunities, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 819-2826 (2009), doi:10.1098/rsta.2009.0077
[3] Menzies, K., Large eddy simulation applications in gas turbines, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2827-2838 (2009)
[4] George, W. K.; Tutkun, M., Mind the gap: a guideline for large eddy simulation, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2839-2847 (2009) · Zbl 1185.76721
[5] Sagaut, P.; Deck, S., Large eddy simulation for aerodynamics: status and perspectives, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2849-2860 (2009) · Zbl 1185.76004
[6] Margolin, L. G., Finite-scale equations for compressible fluid flow, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2861-2871 (2009) · Zbl 1185.76840
[7] Geurts, B. J., Analysis of errors occurring in large eddy simulation, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2873-2883 (2009) · Zbl 1185.76722
[8] Leschziner, M.; Li, N.; Tessicini, F., Simulating flow separation from continuous surfaces: routes to overcoming the reynolds number barrier, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2885-2903 (2009) · Zbl 1185.76726
[9] Davidson, L., Hybrid LES-RANS: back scatter from a scale-similarity model used as forcing, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2905-2915 (2009) · Zbl 1185.76718
[10] Krajnović, S., Large eddy simulation of flows around ground vehicles and other bluff bodies, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2917-2930 (2009) · Zbl 1185.76725
[11] Grinstein, F. F., On integrating large eddy simulation and laboratory turbulent flow experiments, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2931-2945 (2009) · Zbl 1185.76724
[12] Cullen, M. J.P.; Brown, A. R., Large eddy simulation of the atmosphere on various scales, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2947-2956 (2009) · Zbl 1185.86012
[13] Fureby, C., Large eddy simulation modelling of combustion for propulsion applications, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2957-2969 (2009) · Zbl 1185.76720
[14] Youngs, D. L., Application of monotone integrated large eddy simulation to Rayleigh-Taylor mixing, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2971-2983 (2009) · Zbl 1185.76734
[15] Drikakis, D.; Hahn, M.; Mosedale, A.; Thornber, B., Large eddy simulation using high-resolution and high-order methods, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2985-2997 (2009) · Zbl 1185.76719
[16] Eastwood, S. J.; Tucker, P. G.; Xia, H.; Klostermeier, C., Developing large eddy simulation for turbomachinery applications, Phil Trans Roy Soc Lond A - Math Phys Eng Sci, 367, 2999-3013 (2009)
[17] Berselli, L. C.; Iliescu, T.; Layton, W. J., Mathematics of large eddy simulation of turbulent flows (2006), Springer: Springer Berlin (New York) · Zbl 1089.76002
[18] Sagaut, P., Large eddy simulation for incompressible flows: an introduction (2006), Springer: Springer Berlin (New York) · Zbl 1091.76001
[19] Wagner, C. A.; Hüttl, T.; Sagaut, P., Large-eddy simulation for acoustics (2007), Cambridge University Press: Cambridge University Press Cambridge (UK)
[20] Grinstein, F. F.; Margolin, L. G.; Rider, W. J., Implicit large eddy simulation: computing turbulent fluid dynamics (2007), Cambridge University Press: Cambridge University Press Cambridge (UK) · Zbl 1273.76213
[21] Meyers, J.; Geurts, B. J.; Sagaut, P., Quality and reliability of large-eddy simulations. Quality and reliability of large-eddy simulations, ERCOFTAC series (2008), Springer: Springer Berlin (New York) · Zbl 1143.76004
[22] Ihme, M., Pollutant formation and noise emission in turbulent diffusion flames: model development and application to large-eddy simulation (2008), VDM Verlag: VDM Verlag Saarbrücken (Germany)
[23] Garnier, E.; Adams, N.; Sagaut, P., Large eddy simulation for compressible flows (2009), Springer: Springer New York · Zbl 1179.76005
[24] Jiang, X.; Lai, C.-H., Numerical techniques for direct and large eddy simulations (2009), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton (FL) · Zbl 1185.76003
[25] Stolz, S.; Adams, N. A., An approximate deconvolution procedure for large-eddy simulation, Phys Fluids, 11, 1699-1701 (1999) · Zbl 1147.76506
[26] Pope, S. B., Turbulent flows (2000), Cambridge University Press: Cambridge University Press Cambridge (UK) · Zbl 0802.76033
[27] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-order methods for incompressible fluid flow (2002), Cambridge University Press: Cambridge University Press Cambridge (UK) · Zbl 1007.76001
[28] (Hirsch Hadorn, G.; Hoffman-Riem, H.; Biber-Klemm, S.; Grossenbacher-Mansuy, W.; Joye, D.; Pohl, C.; etal., Handbook of transdisciplinary research (2008), Springer: Springer Berlin (New York))
[29] Roepke, F. K.; Hillebrandt, W.; Schmidt, W.; Niemeyer, J. C.; Blinnikov, S. I.; Mazzali, P. A., A three-dimensional deflagration model for type ia supernovae compared with observations, Astrophys J, 668, 2, Part 1, 1132-1139 (2007)
[30] Shen, W. Z.; Zhu, W.; Sørensen, J. N., Aeroacoustic computations for turbulent airfoil flows, AIAA J, 47, 6, 1518-1527 (2009)
[31] Box, G. E.P.; Draper, N. R., Empirical model-building and response surfaces, wiley series in probability and mathematical statistics. Empirical model-building and response surfaces, wiley series in probability and mathematical statistics, Applied probability and statistics (1987), John Wiley & Sons: John Wiley & Sons New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.