×

zbMATH — the first resource for mathematics

Three-dimensional numerical modelling by XFEM of spring-layer imperfect curved interfaces with applications to linearly elastic composite materials. (English) Zbl 1242.74181
Summary: The spring-layer interface model is widely used in describing some imperfect interfaces frequently involved in materials and structures. Typically, it is appropriate for modelling a thin soft interphase layer between two relatively stiff bulk media. According to the spring-layer interface model, the displacement vector suffers a jump across an interface whereas the traction vector is continuous across the same interface and is, in the linear case, proportional to the displacement vector jump. In the present work, an efficient three-dimensional numerical approach based on the extended finite element method is first proposed to model linear spring-layer curved imperfect interfaces and then applied to predict the effective elastic moduli of composites in which such imperfect interfaces intervene. In particular, a rigorous derivation of the linear spring-layer interface model is provided to clarify its domain of validity. The accuracy and convergence rate of the elaborated numerical approach are assessed via benchmark tests for which exact analytical solutions are available. The computated effective elastic moduli of composites are compared with the relevant analytical lower and upper bounds.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74E30 Composite and mixture properties
74B05 Classical linear elasticity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Benveniste, The effective mechanical behaviour of composite materials with imperfect contact between the constituents, Mechanics of Materials 4 pp 197– (1985) · doi:10.1016/0167-6636(85)90016-X
[2] Achenbach, Effect of interfacial zone on mechanical behaviour and failure of fiber-reinforced composites, Journal of the Mechanics and Physics of Solids 37 pp 381– (1989) · doi:10.1016/0022-5096(89)90005-7
[3] Hashin, Thermoelastic properties of fiber composites with imperfect interface, Mechanics of Materials 8 pp 333– (1990) · doi:10.1016/0167-6636(90)90051-G
[4] Hashin, The spherical inclusion with imperfect interface, Journal of Applied Mechanics ASME 58 pp 444– (1991) · doi:10.1115/1.2897205
[5] Hashin, Extremum principles for elastic heterogenous media with imperfect interfaces and their application to bounding of effective moduli, Journal of the Mechanics and Physics of Solids 40 pp 767– (1992) · Zbl 0760.73077 · doi:10.1016/0022-5096(92)90003-K
[6] Qu, The effect of slightly weakened interfaces on the overall elastic properties of composite materials, Mechanics of Materials 14 pp 269– (1993) · doi:10.1016/0167-6636(93)90082-3
[7] Hashin, Thin interphase imperfect interface in elasticity with application to coated fiber composites, Journal of the Mechanics and Physics of Solids 50 pp 2509– (2002) · Zbl 1080.74006 · doi:10.1016/S0022-5096(02)00050-9
[8] Duan, Stress concentration tensors of inhomogeneities with interface effects, Mechanics of Materials 37 pp 723– (2005) · doi:10.1016/j.mechmat.2004.07.004
[9] Wang, An anti-interpenetration model and connections between interphase and interface models in particle-reinforced composites, International Journal of Mechanical Sciences 47 pp 701– (2005) · Zbl 1192.74084 · doi:10.1016/j.ijmecsci.2004.12.014
[10] Benveniste, A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media, Journal of the Mechanics and Physics of Solids 54 pp 708– (2006) · Zbl 1120.74323 · doi:10.1016/j.jmps.2005.10.009
[11] Gu S-T Contributions to the modelling of imperfect interfaces and to the homogenization of heterogeneous materials 2008
[12] Belytschko, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering 45 pp 601– (1999) · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[13] Moës, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering 46 pp 131– (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[14] Chessa, On the construction of blending elements for local partition of unity enriched finite elements, International Journal for Numerical Methods in Engineering 57 pp 1015– (2003) · Zbl 1035.65122 · doi:10.1002/nme.777
[15] Fries, A corrected XFEM approximation without problems in blending elements, International Journal for Numerical Methods in Engineering 75 pp 503– (2008) · Zbl 1195.74173 · doi:10.1002/nme.2259
[16] Béchet, Imposing Dirichlet boundary conditions in the extended finite element method, International Journal for Numerical Methods in Engineering 67 pp 1641– (2006) · Zbl 1113.74072 · doi:10.1002/nme.1675
[17] Mourad, A bubble-stabilized finite element method for Dirichlet constraints on embedded interfaces, International Journal for Numerical Methods in Engineering 69 pp 772– (2007) · Zbl 1194.65136 · doi:10.1002/nme.1788
[18] Béchet, A stable lagrange multiplier space for stiff interface conditions within the extended finite element method, International Journal for Numerical Methods in Engineering 78 pp 931– (2009) · Zbl 1183.74259 · doi:10.1002/nme.2515
[19] Belytschko, Arbitrary discontinuities in finite elements, International Journal for Numerical Methods in Engineering 50 pp 993– (2001) · Zbl 0981.74062 · doi:10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
[20] Ji, On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method, International Journal for Numerical Methods in Engineering 61 pp 2508– (2004) · Zbl 1075.74651 · doi:10.1002/nme.1167
[21] Fries, The intrinsic partition of unity method, Computational Mechanics 40 pp 803– (2007) · Zbl 1162.74049 · doi:10.1007/s00466-006-0142-x
[22] Nistor, An X-FEM approach for large sliding contact along discontinuities, International Journal for Numerical Methods in Engineering 78 pp 1407– (2009) · Zbl 1183.74301 · doi:10.1002/nme.2532
[23] Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics, Computer Methods in Applied Mechanics and Engineering 193 pp 3523– (2004) · Zbl 1068.74076 · doi:10.1016/j.cma.2003.12.041
[24] Areias Pedro, A comment on the article ’A finite element method for simulation of strong and weak discontinuities in solid mechanics’ by Hansbo A and Hansbo P [Comput. Methods Appl. Mech. Engrg. 2004; 193:3523-3540], Computer Methods in Applied Mechanics and Engineering 195 pp 9– (2006) · Zbl 1068.74076
[25] Nairn, Numerical implementation of imperfect interfaces, Computational Materials Science 40 pp 525– (2007) · doi:10.1016/j.commatsci.2007.02.010
[26] Yvonnet, An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites, Computational Mechanics 42 pp 119– (2008) · Zbl 1188.74076 · doi:10.1007/s00466-008-0241-y
[27] Gurtin, A general theory of curved deformable interfaces in solids at equilibrium, Philosophical Magazine A 78 pp 1093– (1998) · doi:10.1080/01418619808239977
[28] Sharma, Effect of surfaces on the size dependent elastic state of nano-inhomogeneities, Applied Physics Letters 82 pp 535– (2003) · doi:10.1063/1.1539929
[29] Duan, Size dependent effective elastic constants of solids containing nanoinhomogeneities with interface stress, Journal of the Mechanics and Physics of Solids 53 pp 1574– (2005) · Zbl 1120.74718 · doi:10.1016/j.jmps.2005.02.009
[30] Chen, Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal-mechanical connections, International Journal of Solids and Structures 44 pp 941– (2007) · Zbl 1120.74045 · doi:10.1016/j.ijsolstr.2006.05.030
[31] Povstenko, Theoretical investigation of phenomena caused by heterogeneous surface tension in solids, Journal of the Mechanics and Physics of Solids 41 pp 1499– (1993) · Zbl 0784.73072 · doi:10.1016/0022-5096(93)90037-G
[32] Barenblatt, The mathematical theory of equilibrium of cracks in brittle fracture, Advances in Applied Mechanics 7 pp 55– (1962) · doi:10.1016/S0065-2156(08)70121-2
[33] Hillerborg, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research 6 pp 163– (1976) · doi:10.1016/0008-8846(76)90007-7
[34] Ortiz, Finite-deformation irreversible cohesive elements for three-dimensional crack propagation analysis, International Journal for Numerical Methods in Engineering 44 pp 1267– (1999) · Zbl 0932.74067 · doi:10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
[35] Moës, Extended finite element method for cohesive crack growth, Computer Methods in Applied Mechanics and Engineering 69 pp 813– (2002)
[36] Zohdi, Lecture Notes in Applied and Computational Mechanics, in: Introduction to Computational Micromechanics (2008) · Zbl 1143.74002
[37] Mura, The stress field of a sliding inclusion, International Journal of Solids and Structures 21 pp 1165– (1985) · doi:10.1016/0020-7683(85)90002-2
[38] Zhong, On the elastic field of a spherical inhomogeneity with an imperfectly bonded interface, Journal of Elasticity 46 pp 91– (1997) · Zbl 0889.73010 · doi:10.1023/A:1007342605107
[39] Shen, Interfacial thermal stress analysis of an elliptical inclusion with a compliant interphase layer in plane elasticity, International Journal of Solids and Structures 38 pp 7587– (2001) · Zbl 1011.74015 · doi:10.1016/S0020-7683(01)00033-6
[40] Lipton, Composites with imperfect interface, Proceedings of the Royal Society London A 452 pp 329– (1996) · Zbl 0872.73033 · doi:10.1098/rspa.1996.0018
[41] Osher, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics 79 pp 12– (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[42] Moës, A computational approach to handle complex microstructure geometries, Computer Methods in Applied Mechanics and Engineering 192 pp 3163– (2003) · Zbl 1054.74056 · doi:10.1016/S0045-7825(03)00346-3
[43] Asaro, Somigliana dislocations and internal stresses: with application to second phase hardening, International Journal of Engineering Science 13 pp 271– (1975) · Zbl 0294.73078 · doi:10.1016/0020-7225(75)90035-X
[44] Recio, On the use of element-free Galerkin method for problems involving incompressibility, Engineering Analysis with Boundary Elements 31 pp 102– (2007) · Zbl 1195.74298 · doi:10.1016/j.enganabound.2006.08.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.