×

On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation. (English) Zbl 1242.74087

Summary: This work describes a homogenization-based multi-scale procedure required for the computation of the material response of non-linear microstructures undergoing small strains. Such procedures are important for computer modelling of heterogeneous materials when the length-scale of heterogeneities is small compared to the dimensions of the body. The described multi-scale procedure relies on a unified variational basis which, apart from the continuum-based variational formulation at both micro- and macroscales of the problem, also includes the variational formulation governing micro-to-macro transitions. This unified variational basis leads naturally to a generic finite element-based framework for homogenization-based multi-scale analysis of heterogeneous solids. In addition, the unified variational formulation provides clear axiomatic basis and hierarchy related to the choice of boundary conditions at the microscale. Classical kinematical constraints are considered over the representative volume element: (i) Taylor, (ii) linear boundary displacements, (iii) periodic boundary displacement fluctuations and (iv) minimal constraint, also known as uniform boundary tractions. In this context the Hill-Mandel averaging requirement, which links microscopic and macroscopic stress power, plays a fundamental role in defining the microscopic forces compatible with the assumed kinematics. Numerical examples of both microscale and two-scale finite element simulations of elasto-plastic material with microcavities are presented to illustrate the main features and scope of the described computational strategy.

MSC:

74Q05 Homogenization in equilibrium problems of solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74E05 Inhomogeneity in solid mechanics

Software:

VCFEM-HOMO; HYPLAS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sanchez-Palencia, Comportement local et macroscopique d’un type de milieux physique hétérogènes, International Journal of Engineering Science 12 pp 231– (1974) · Zbl 0275.76032 · doi:10.1016/0020-7225(74)90062-7
[2] Suquet, Plasticity Today: Modelling Methods and Applications (1985)
[3] Suquet, Homogenization Techniques for Composite Media (1987)
[4] Oden, Hierarchical modelling of heterogenous solids, Computer Methods in Applied Mechanics and Engineering 172 pp 2– (1999) · Zbl 0972.74014 · doi:10.1016/S0045-7825(98)00224-2
[5] Zohdi, Hierarchical modeling of heterogeneous bodies, Computer Methods in Applied Mechanics and Engineering 138 pp 273– (1996) · Zbl 0921.73080 · doi:10.1016/S0045-7825(96)01106-1
[6] Ghosh, Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element method, Computer Methods in Applied Mechanics and Engineering 132 pp 63– (1996) · Zbl 0892.73061 · doi:10.1016/0045-7825(95)00974-4
[7] Moulinec, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Computer Methods in Applied Mechanics and Engineering 157 pp 69– (1998) · Zbl 0954.74079 · doi:10.1016/S0045-7825(97)00218-1
[8] Michel, Effective properties of composite materials with periodic microstructure: a computational approach, Computer Methods in Applied Mechanics and Engineering 172 pp 109– (1999) · Zbl 0964.74054 · doi:10.1016/S0045-7825(98)00227-8
[9] Fish, Computational plasticity for composite structures based on mathematical homogenization: theory and practice, Computer Methods in Applied Mechanics and Engineering 148 pp 53– (1997) · Zbl 0924.73145 · doi:10.1016/S0045-7825(97)00030-3
[10] Fish, Multiscale enrichment based on partition of unity, International Journal for Numerical Methods in Engineering 62 pp 1341– (2005) · Zbl 1078.74637 · doi:10.1002/nme.1230
[11] Yuan, Toward realization of computational homogenization in practice, International Journal for Numerical Methods in Engineering 73 pp 361– (2008) · Zbl 1159.74044 · doi:10.1002/nme.2074
[12] Smit, Prediction of the mechanical behaviour of nonlinear heterogeneous systems by multi-level finite element modeling, Computer Methods in Applied Mechanics and Engineering 155 pp 181– (1998) · Zbl 0967.74069 · doi:10.1016/S0045-7825(97)00139-4
[13] Feyel, FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Computer Methods in Applied Mechanics and Engineering 183 pp 309– (2000) · Zbl 0993.74062 · doi:10.1016/S0045-7825(99)00224-8
[14] Miehe, Computational micro-macro transitions and overall tangent moduli in the analysis of polycrystals at large strains, Computational Materials Science 16 pp 372– (1999) · doi:10.1016/S0927-0256(99)00080-4
[15] Miehe, Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials, Computer Methods in Applied Mechanics and Engineering 171 pp 387– (1999) · Zbl 0982.74068 · doi:10.1016/S0045-7825(98)00218-7
[16] Miehe, Computational micro-macro transitions of discretized microstructures undergoing small strains, Archives of Applied Mechanics 72 pp 300– (2002) · Zbl 1032.74010 · doi:10.1007/s00419-002-0212-2
[17] Pellegrino, Numerical homogenization of periodic composite materials with non-linear material components, International Journal for Numerical Methods in Engineering 46 pp 1609– (1999) · Zbl 0968.74054 · doi:10.1002/(SICI)1097-0207(19991210)46:10<1609::AID-NME716>3.0.CO;2-Q
[18] Kouznetsova, An approach to micro-macro modelling of heterogeneous materials, Computational Mechanics 27 pp 37– (2001) · Zbl 1005.74018 · doi:10.1007/s004660000212
[19] Kouznetsova VG Computational homogenization for multiscale analysis of multi-phase materials 2002
[20] Ladevèze, A micro-macro and parallel computational strategy for highly heterogeneous structures, International Journal for Numerical Methods in Engineering 52 pp 121– (2001) · doi:10.1002/nme.274
[21] Ladevèze, Multiscale modelling and computational strategies for composites, International Journal for Numerical Methods in Engineering 60 pp 233– (2004) · Zbl 1060.74526 · doi:10.1002/nme.960
[22] Terada, A class of general algorithms for multi-scale analyses of heterogeneous media, Computer Methods in Applied Mechanics and Engineering 190 pp 5427– (2001) · Zbl 1001.74095 · doi:10.1016/S0045-7825(01)00179-7
[23] Matsui, Two-scale finite element analysis of heterogeneous solids with periodic microstructures, Computers and Structures 82 pp 593– (2004) · doi:10.1016/j.compstruc.2004.01.004
[24] Watanabe, Characterization of macroscopic tensile strength of polycrystalline metals with two-scale finite element analysis, Journal of the Mechanics and Physics of Solids 56 pp 1105– (2008) · Zbl 1151.74011 · doi:10.1016/j.jmps.2007.06.001
[25] Markovič, On micro-macro interface conditions for micro-scale based FEM for inelastic behaviour of heterogeneous materials, Computer Methods in Applied Mechanics and Engineering 193 pp 5503– (2004) · Zbl 1112.74530 · doi:10.1016/j.cma.2003.12.072
[26] Zohdi, Introduction to Computational Micromechanics (2005) · Zbl 1143.74002 · doi:10.1007/978-3-540-32360-0
[27] Belytschko, Multiscale aggregating discontinuities: a method for circumventing loss of material stability, International Journal for Numerical Methods in Engineering 73 pp 869– (2008) · Zbl 1195.74008 · doi:10.1002/nme.2156
[28] Belytschko, Coarse-graining of multiscale crack propagation, International Journal for Numerical Methods in Engineering 81 pp 537– (2010) · Zbl 1183.74260
[29] Hund, Locality constraints within multiscale model for non-linear material behaviour, International Journal for Numerical Methods in Engineering 70 pp 1613– (2007) · Zbl 1194.74412 · doi:10.1002/nme.1953
[30] Swan, Techniques for stress- and strain-controlled homogenization of inelastic periodic composites, Computer Methods in Applied Mechanics and Engineering 117 pp 249– (1994) · Zbl 0846.73039 · doi:10.1016/0045-7825(94)90117-1
[31] Mandel, CISM Courses and Lectures No. 97 (1971)
[32] Hill, On constitutive macro-variables for heterogeneous solids at finite strain, Proceedings of the Royal Society of London, Series A 326 pp 131– (1972) · Zbl 0229.73004 · doi:10.1098/rspa.1972.0001
[33] Willis, Variational and related methods for the overall properties of composites, Advances in Applied Mechanics 21 pp 1– (1981) · Zbl 0476.73053 · doi:10.1016/S0065-2156(08)70330-2
[34] Nemat-Nasser, Micromechanics: Overall Properties of Heterogeneous Materials (1993) · Zbl 0924.73006
[35] de Souza Neto EA Feijóo RA Variational foundations of multi-scale constitutive models of solid: small and large strain kinematical formulation 2006
[36] Hill, A self-consistent mechanics of composite materials, Journal of the Mechanics and Physics of Solids 13 (4) pp 213– (1965) · doi:10.1016/0022-5096(65)90010-4
[37] Taylor, Plastic strains in metals, Journal Institute of Metals 62 pp 307– (1938)
[38] Simo, Computational inelasticity (1998)
[39] Belytschko, Nonlinear Finite Elements for Continua and Structures (2000)
[40] de Souza Neto, Computational Methods for Plasticity: Theory and Applications (2008) · doi:10.1002/9780470694626
[41] Wriggers, Nonlinear Finite Element Methods (2008)
[42] de Souza Neto, A computational framework for a class of fully coupled models for elastoplastic damage at finite strains with reference to the linearization aspects, Computer Methods in Applied Mechanics and Engineering 130 pp 179– (1996) · Zbl 0860.73066 · doi:10.1016/0045-7825(95)00872-1
[43] de Souza Neto, Continuum modelling and numerical simulation of material damage at finite strains, Archives of Computational Methods in Engineering 5 pp 311– (1998) · doi:10.1007/BF02905910
[44] Dutko, Universal anisotropic yield criterion based on superquadric functional representation-1: algorithmic issues and accuracy analysis, Computer Methods in Applied Mechanics and Engineering 109 pp 73– (1993) · Zbl 0847.73013 · doi:10.1016/0045-7825(93)90225-M
[45] Perić, On a class of constitutive equations in viscoplasticity: formulation and computational issues, International Journal for Numerical Methods in Engineering 36 pp 1365– (1993) · Zbl 0815.73020 · doi:10.1002/nme.1620360807
[46] Perić, A new computational model for Tresca plasticity at finite strains with an optimal parametrization in the principal space, Computer Methods in Applied Mechanics and Engineering 171 pp 463– (1999) · Zbl 0958.74070 · doi:10.1016/S0045-7825(98)00221-7
[47] Somer, A sub-stepping scheme for multi-scale analysis of solids, Computer Methods in Applied Mechanics and Engineering 198 pp 1006– (2009) · Zbl 1229.74119 · doi:10.1016/j.cma.2008.11.013
[48] Speirs, An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization, Journal of Biomechanics 41 pp 2673– (2008) · doi:10.1016/j.jbiomech.2008.06.020
[49] Giusti, Sensitivity of the macroscopic elasticity tensor to topological microstructural changes, Journal of the Mechanics and Physics of Solids 57 pp 555– (2009) · Zbl 1170.74372 · doi:10.1016/j.jmps.2008.11.008
[50] Giusti, Sensitivity of the macroscopic thermal conductivity tensor to topological microstructural changes, Computer Methods in Applied Mechanics and Engineering 198 pp 727– (2009) · Zbl 1229.74120 · doi:10.1016/j.cma.2008.10.005
[51] Giusti, Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions, Proceedings of the Royal Society A 466 pp 1703– (2010) · Zbl 1334.74037 · doi:10.1098/rspa.2009.0499
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.