×

zbMATH — the first resource for mathematics

Solving third- and fourth-order partial differential equations using GFDM: application to solve problems of plates. (English) Zbl 1242.65217
Summary: This paper describes the generalized finite difference method (GFDM) to solve second-order partial differential equation systems and fourth-order partial differential equations. This method is applied to solve the problem of thin and thick elastic plates.

MSC:
65N06 Finite difference methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
74S20 Finite difference methods applied to problems in solid mechanics
35J40 Boundary value problems for higher-order elliptic equations
74K20 Plates
35J47 Second-order elliptic systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ANSYS 12.0 (ANSYS, Inc.), Software commercial ANSYS
[2] DOI: 10.1016/S0307-904X(01)00029-4 · Zbl 0994.65111
[3] DOI: 10.1016/S0045-7825(02)00594-7 · Zbl 1024.65099
[4] DOI: 10.1016/j.cam.2006.10.090 · Zbl 1139.35007
[5] DOI: 10.1080/00207160601167052 · Zbl 1138.65098
[6] Benito, J. J., Urena, F. and Gavete, L. 2008. ”Leading-edge Applied Mathematical Modelling Research”. New York: Nova Science Publishers. Chapter 7
[7] Benito J. J., Comput. Modell. Eng. Sci. 38 pp 39– (2009)
[8] DOI: 10.1016/S0307-904X(03)00091-X · Zbl 1046.65085
[9] DOI: 10.1016/0045-7949(72)90020-X
[10] DOI: 10.1016/0045-7949(80)90149-2 · Zbl 0427.73077
[11] Orkisz J., Handbook of Computational Solid Mechanics pp 336– (1998)
[12] DOI: 10.1016/0045-7949(75)90018-8
[13] DOI: 10.1016/j.cam.2010.05.026 · Zbl 1209.65088
[14] Zienkiewicz O. C., El Método de los Elementos Finitos 2 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.