zbMATH — the first resource for mathematics

Globally solvable systems of complex vector fields. (English) Zbl 1242.35092
Summary: We consider a class of involutive systems of \(n\) smooth vector fields on the \(n+1\) dimensional torus. We obtain a complete characterization for the global solvability of this class in terms of Liouville forms and of the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form in the minimal covering space.

35F05 Linear first-order PDEs
35N15 \(\overline\partial\)-Neumann problems and formal complexes in context of PDEs
35A30 Geometric theory, characteristics, transformations in context of PDEs
Full Text: DOI
[1] Bergamasco, A.P., Remarks about global analytic hypoellipticity, Trans. amer. math. soc., 351, 10, 4113-4126, (1999) · Zbl 0932.35046
[2] Bergamasco, A.P.; Cordaro, P.; Malagutti, P., Globally hypoelliptic systems of vector fields, J. funct. anal., 114, 267-285, (1993) · Zbl 0777.58041
[3] Bergamasco, A.P.; Cordaro, P.D.; Petronilho, G., Global solvability for certain classes of underdetermined systems of vector fields, Math. Z., 223, 261-274, (1996) · Zbl 0863.58062
[4] Bergamasco, A.P.; Kirilov, A., Global solvability for a class of overdetermined systems, J. funct. anal., 252, 603-629, (2007) · Zbl 1158.58011
[5] A.P. Bergamasco, A. Kirilov, W. Nunes, S.L. Zani, On the global solvability for overdetermined systems, Trans. Amer. Math. Soc., in press. · Zbl 1275.35004
[6] Bergamasco, A.P.; Nunes, W.; Zani, S.L., Global properties of a class of overdetermined systems, J. funct. anal., 200, 1, 31-64, (2003) · Zbl 1034.32024
[7] Bergamasco, A.P.; Petronilho, G., Global solvability of a class of involutive systems, J. math. anal. appl., 233, 314-327, (1999) · Zbl 0942.35011
[8] Berhanu, S.; Cordaro, P.; Hounie, J., An introduction to involutive structures, (2008), Cambridge University Press · Zbl 1151.35011
[9] Cardoso, F.; Hounie, J., Global solvability of an abstract complex, Proc. amer. math. soc., 65, 117-124, (1977) · Zbl 0335.58015
[10] Hounie, J., Globally hypoelliptic and globally solvable first-order evolution equations, Trans. amer. math. soc., 252, 233-248, (1979) · Zbl 0424.35030
[11] Treves, F., Study of a model in the theory of complexes of pseudodifferential operators, Ann. of math. (2), 104, 269-324, (1976) · Zbl 0354.35067
[12] Treves, F., Hypoanalytic structures (local theory), (1992), Princeton University Press Princeton, NJ · Zbl 0787.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.