×

zbMATH — the first resource for mathematics

Spatial resolution correction for wall-bounded turbulence measurements. (English) Zbl 1241.76288
Summary: A correction for streamwise Reynolds stress data acquired with insufficient spatial resolution is proposed for wall-bounded flows. The method is based on the attached eddy hypothesis to account for spatial filtering effects at all wall-normal positions. This analysis reveals that outside the near-wall region the spatial filtering effect scales inversely with the distance from the wall, in contrast to the commonly assumed scaling with the viscous length scale. The new formulation is shown to work very well for data taken over a wide range of Reynolds numbers and wire lengths.

MSC:
76F40 Turbulent boundary layers
76-05 Experimental work for problems pertaining to fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112098002419 · Zbl 0941.76510 · doi:10.1017/S0022112098002419
[2] DOI: 10.1017/S0022112004008985 · Zbl 1060.76508 · doi:10.1017/S0022112004008985
[3] DOI: 10.1088/0022-3735/1/11/310 · doi:10.1088/0022-3735/1/11/310
[4] DOI: 10.1063/1.3481146 · Zbl 06421084 · doi:10.1063/1.3481146
[5] DOI: 10.1007/BF00191694 · doi:10.1007/BF00191694
[6] DOI: 10.1063/1.1344894 · Zbl 1184.76364 · doi:10.1063/1.1344894
[7] DOI: 10.1063/1.3453711 · Zbl 1190.76086 · doi:10.1063/1.3453711
[8] DOI: 10.1063/1.1589014 · Zbl 1186.76353 · doi:10.1063/1.1589014
[9] DOI: 10.1017/S0022112009994071 · Zbl 1189.76028 · doi:10.1017/S0022112009994071
[10] DOI: 10.1088/0022-3735/20/3/019 · doi:10.1088/0022-3735/20/3/019
[11] DOI: 10.1063/1.868516 · doi:10.1063/1.868516
[12] DOI: 10.1145/361082.361101 · Zbl 0281.65006 · doi:10.1145/361082.361101
[13] DOI: 10.1088/0957-0233/16/9/001 · doi:10.1088/0957-0233/16/9/001
[14] DOI: 10.1017/S0022112067001740 · doi:10.1017/S0022112067001740
[15] DOI: 10.1017/S0022112000001713 · Zbl 0958.76509 · doi:10.1017/S0022112000001713
[16] DOI: 10.1017/S0022112010002715 · Zbl 1205.76013 · doi:10.1017/S0022112010002715
[17] DOI: 10.1088/0957-0233/20/11/115401 · doi:10.1088/0957-0233/20/11/115401
[18] DOI: 10.1017/S0022112009007721 · Zbl 1183.76025 · doi:10.1017/S0022112009007721
[19] DOI: 10.1017/S0022112005004751 · Zbl 1156.76307 · doi:10.1017/S0022112005004751
[20] DOI: 10.1088/0957-0233/21/10/105407 · doi:10.1088/0957-0233/21/10/105407
[21] DOI: 10.1017/S0022112010003447 · Zbl 1205.76005 · doi:10.1017/S0022112010003447
[22] DOI: 10.1063/1.2717527 · Zbl 1146.76307 · doi:10.1063/1.2717527
[23] DOI: 10.1017/S0022112010003952 · Zbl 1225.76022 · doi:10.1017/S0022112010003952
[24] Townsend, The Structure of Turbulent Shear Flow (1976) · Zbl 0325.76063
[25] DOI: 10.1017/S0022112008000803 · Zbl 1175.76025 · doi:10.1017/S0022112008000803
[26] DOI: 10.1017/S0022112094001370 · doi:10.1017/S0022112094001370
[27] DOI: 10.1017/S0022112082001311 · Zbl 0517.76057 · doi:10.1017/S0022112082001311
[28] DOI: 10.1063/1.870250 · Zbl 1149.76503 · doi:10.1063/1.870250
[29] DOI: 10.1098/rsta.2006.1950 · Zbl 1152.76414 · doi:10.1098/rsta.2006.1950
[30] DOI: 10.1098/rsta.2006.1948 · Zbl 1152.76412 · doi:10.1098/rsta.2006.1948
[31] DOI: 10.1017/S0022112010001497 · Zbl 1193.76015 · doi:10.1017/S0022112010001497
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.