×

zbMATH — the first resource for mathematics

Turbulence in supersonic boundary layers at moderate Reynolds number. (English) Zbl 1241.76286
Summary: We study the organization of turbulence in supersonic boundary layers through large-scale direct numerical simulations (DNS) at \({M}_{\infty } = 2\), and momentum-thickness Reynolds number up to \({{Re}}_{{\delta }_{2} } \approx 3900\) (corresponding to \(Re_{\tau } \approx 1120\)) which significantly extend the current envelope of DNS in the supersonic regime. The numerical strategy relies on high-order, non-dissipative discretization of the convective terms in the Navier-Stokes equations, and it implements a recycling/rescaling strategy to stimulate the inflow turbulence. Comparison of the velocity statistics up to fourth order shows nearly exact agreement with reference incompressible data, provided the momentum-thickness Reynolds number is matched, and provided the mean velocity and the velocity fluctuations are scaled to incorporate the effects of mean density variation, as postulated by Morkovin’s hypothesis. As also found in the incompressible regime, we observe quite a different behaviour of the second-order flow statistics at sufficiently large Reynolds number, most of which show the onset of a range with logarithmic variation, typical of ‘attached’ variables, whereas the wall-normal velocity exhibits a plateau away from the wall, which is typical of ‘detached’ variables. The modifications of the structure of the flow field that underlie this change of behaviour are highlighted through visualizations of the velocity and temperature fields, which substantiate the formation of large jet-like and wake-like motions in the outer part of the boundary layer. It is found that the typical size of the attached eddies roughly scales with the local mean velocity gradient, rather than being proportional to the wall distance, as happens for the wall-detached variables. The interactions of the large eddies in the outer layer with the near-wall region are quantified through a two-point amplitude modulation covariance, which characterizes the modulating action of energetic outer-layer eddies.

MSC:
76F40 Turbulent boundary layers
76J20 Supersonic flows
76N20 Boundary-layer theory for compressible fluids and gas dynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] van Driest, Aeronaut. Engng Rev. 15 pp 26– (1956)
[2] DOI: 10.1017/S0022112009006624 · Zbl 1181.76084 · doi:10.1017/S0022112009006624
[3] DOI: 10.1017/S0022112006003107 · Zbl 1105.76031 · doi:10.1017/S0022112006003107
[4] van Driest, J. Aero. Sci. 18 pp 145– (1951) · doi:10.2514/8.1895
[5] DOI: 10.1146/annurev.fluid.32.1.203 · Zbl 0988.76042 · doi:10.1146/annurev.fluid.32.1.203
[6] DOI: 10.1017/S0022112000002718 · Zbl 1007.76031 · doi:10.1017/S0022112000002718
[7] Townsend, The Structure of Turbulent Shear Flow (1976) · Zbl 0325.76063
[8] DOI: 10.1063/1.1711360 · Zbl 0126.22303 · doi:10.1063/1.1711360
[9] DOI: 10.1017/S0022112005004453 · Zbl 1102.76020 · doi:10.1017/S0022112005004453
[10] DOI: 10.1063/1.1588637 · Zbl 1186.76501 · doi:10.1063/1.1588637
[11] DOI: 10.1063/1.3541841 · Zbl 06421601 · doi:10.1063/1.3541841
[12] Kong, Phys. Fluids 10 pp 85– (2000)
[13] DOI: 10.1146/annurev.fl.26.010194.001443 · doi:10.1146/annurev.fl.26.010194.001443
[14] DOI: 10.1017/S0022112087002258 · doi:10.1017/S0022112087002258
[15] DOI: 10.1017/S0022112087000892 · Zbl 0616.76071 · doi:10.1017/S0022112087000892
[16] DOI: 10.1017/S0022112091001118 · doi:10.1017/S0022112091001118
[17] DOI: 10.1016/j.jcp.2007.09.020 · Zbl 1290.76135 · doi:10.1016/j.jcp.2007.09.020
[18] DOI: 10.1063/1.857511 · doi:10.1063/1.857511
[19] DOI: 10.1017/S0022112099005066 · Zbl 0948.76025 · doi:10.1017/S0022112099005066
[20] Smits, J. Ship Res. pp 147– (1983)
[21] Jiménez, J. Fluid Mech. 657 pp 336– (2010) · Zbl 1197.76063 · doi:10.1017/S0022112010001370
[22] Smits, Turbulent Shear Layers in Supersonic Flow (2006)
[23] Jiménez, J. Fluid Mech. 611 pp 215– (2008) · Zbl 1151.76512 · doi:10.1017/S0022112008002747
[24] Smith, Exp. Fluids 18 pp 288– (1995)
[25] DOI: 10.1017/S0022112009007721 · Zbl 1183.76025 · doi:10.1017/S0022112009007721
[26] DOI: 10.1016/0894-1777(93)90005-4 · doi:10.1016/0894-1777(93)90005-4
[27] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[28] DOI: 10.1023/A:1020404706293 · Zbl 1113.76379 · doi:10.1023/A:1020404706293
[29] DOI: 10.1016/j.jcp.2009.02.031 · Zbl 1273.76009 · doi:10.1016/j.jcp.2009.02.031
[30] DOI: 10.1063/1.3139294 · Zbl 1183.76457 · doi:10.1063/1.3139294
[31] DOI: 10.1017/S0022112008005090 · Zbl 1165.76301 · doi:10.1017/S0022112008005090
[32] DOI: 10.1017/S0022112095004599 · Zbl 0857.76036 · doi:10.1017/S0022112095004599
[33] DOI: 10.1063/1.3432488 · Zbl 1190.76110 · doi:10.1063/1.3432488
[34] DOI: 10.1063/1.2162185 · doi:10.1063/1.2162185
[35] DOI: 10.1017/S0022112010003113 · Zbl 1205.76139 · doi:10.1017/S0022112010003113
[36] DOI: 10.1017/S0022112007009020 · Zbl 1159.76342 · doi:10.1017/S0022112007009020
[37] DOI: 10.2514/3.6323 · doi:10.2514/3.6323
[38] Pope, Turbulent Flows (2000) · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[39] DOI: 10.1017/S0022112081001791 · doi:10.1017/S0022112081001791
[40] DOI: 10.1016/0021-9991(92)90046-2 · Zbl 0766.76084 · doi:10.1016/0021-9991(92)90046-2
[41] DOI: 10.1017/S0022112000008466 · Zbl 0983.76039 · doi:10.1017/S0022112000008466
[42] DOI: 10.1063/1.1637604 · Zbl 1186.76423 · doi:10.1063/1.1637604
[43] DOI: 10.1115/1.3101858 · doi:10.1115/1.3101858
[44] DOI: 10.1017/S0022112009993156 · Zbl 1189.76290 · doi:10.1017/S0022112009993156
[45] DOI: 10.1016/0017-9310(87)90010-X · Zbl 0623.76068 · doi:10.1016/0017-9310(87)90010-X
[46] DOI: 10.1017/S0022112010001710 · Zbl 1197.76079 · doi:10.1017/S0022112010001710
[47] Gatski, Compressibility, Turbulence and High Speed Flow (2009)
[48] DOI: 10.1016/j.jcp.2010.06.006 · Zbl 1426.76485 · doi:10.1016/j.jcp.2010.06.006
[49] DOI: 10.1017/S0022112009006417 · Zbl 1181.76093 · doi:10.1017/S0022112009006417
[50] DOI: 10.1017/S0022112006009244 · Zbl 1093.76510 · doi:10.1017/S0022112006009244
[51] DOI: 10.1017/S0022112010005677 · Zbl 1225.76182 · doi:10.1017/S0022112010005677
[52] DOI: 10.1017/S0022112090001057 · doi:10.1017/S0022112090001057
[53] DOI: 10.1063/1.3622773 · Zbl 06422764 · doi:10.1063/1.3622773
[54] DOI: 10.1063/1.858179 · doi:10.1063/1.858179
[55] DOI: 10.1063/1.3006423 · Zbl 1182.76550 · doi:10.1063/1.3006423
[56] DOI: 10.1063/1.3589345 · Zbl 06422392 · doi:10.1063/1.3589345
[57] DOI: 10.1017/S0022112091000691 · doi:10.1017/S0022112091000691
[58] Morkovin, Mécanique de la Turbulence pp 367– (1961)
[59] DOI: 10.1017/S0022112006000814 · Zbl 1157.76346 · doi:10.1017/S0022112006000814
[60] DOI: 10.1017/S0022112009992047 · Zbl 1189.76023 · doi:10.1017/S0022112009992047
[61] DOI: 10.1017/S002211200700777X · Zbl 1141.76316 · doi:10.1017/S002211200700777X
[62] DOI: 10.1017/S0022112009991029 · Zbl 1183.76761 · doi:10.1017/S0022112009991029
[63] Eléna, J. Méc. Théor. Appl. 7 pp 175– (1988)
[64] DOI: 10.1063/1.3267726 · Zbl 1183.76346 · doi:10.1063/1.3267726
[65] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[66] DOI: 10.1017/S0022112010005902 · Zbl 1225.76160 · doi:10.1017/S0022112010005902
[67] DOI: 10.1017/S0022112009006946 · Zbl 1181.76008 · doi:10.1017/S0022112009006946
[68] DOI: 10.1063/1.3081555 · Zbl 1183.76062 · doi:10.1063/1.3081555
[69] DOI: 10.1017/S0022112010000959 · Zbl 1197.76078 · doi:10.1017/S0022112010000959
[70] DOI: 10.1063/1.1758218 · Zbl 1186.76582 · doi:10.1063/1.1758218
[71] DOI: 10.1103/PhysRevLett.99.114504 · doi:10.1103/PhysRevLett.99.114504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.