×

zbMATH — the first resource for mathematics

A general analysis for the electrohydrodynamic instability of stratified immiscible fluids. (English) Zbl 1241.76231
Summary: A general solution approach for the electrohydrodynamic instability of stratified immiscible fluids is presented. The problems of two and three fluid layers subject to normal electric fields are analysed. Analytical solutions are obtained by employing transfer relations relating the disturbance stresses to the flow variables at the \(interface(s)\). This approach provides a convenient alternative to the direct solution of the linearized problem. The results assume a general format. Both new dispersion relations and those from various previous works are shown to be special cases when proper simplifications are considered. As a specific example, the instability behaviour of a three-layer channel flow is investigated in detail using this framework. This work provides a unifying method to treat a generic class of instability problems.

MSC:
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76W05 Magnetohydrodynamics and electrohydrodynamics
76D50 Stratification effects in viscous fluids
PDF BibTeX Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112005008542 · Zbl 1156.76331
[2] DOI: 10.1146/annurev.fluid.29.1.27
[3] DOI: 10.1103/PhysRevLett.96.144501
[4] DOI: 10.1016/j.electacta.2006.02.002
[5] DOI: 10.1021/ac0155411
[6] DOI: 10.1063/1.1710898 · Zbl 1186.76326
[7] DOI: 10.1017/S0022112070000757 · Zbl 0193.27003
[8] DOI: 10.1016/j.mechrescom.2008.07.012 · Zbl 1258.76094
[9] DOI: 10.1063/1.1692556
[10] DOI: 10.1017/S0022112007006222 · Zbl 1116.76036
[11] DOI: 10.1063/1.1691866
[12] DOI: 10.1063/1.861967 · Zbl 0361.76045
[13] Melcher, Continuum Electromechanics (1981)
[14] DOI: 10.1017/S0022112076001390 · Zbl 0341.76018
[15] DOI: 10.1017/S0022112008001869 · Zbl 1146.76058
[16] DOI: 10.1063/1.1852459 · Zbl 1187.76107
[17] DOI: 10.1017/S0022112004002381 · Zbl 1065.76545
[18] DOI: 10.1007/s10404-007-0178-z
[19] DOI: 10.1063/1.869567
[20] DOI: 10.1063/1.1694614
[21] DOI: 10.1007/s10404-006-0082-y
[22] DOI: 10.1063/1.2897313 · Zbl 1182.76784
[23] DOI: 10.1063/1.2976137 · Zbl 1182.76783
[24] DOI: 10.1063/1.1979522 · Zbl 1187.76522
[25] DOI: 10.1063/1.1823911 · Zbl 1187.76504
[26] DOI: 10.1007/s10665-004-2118-1 · Zbl 1074.76022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.