×

zbMATH — the first resource for mathematics

Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. (English) Zbl 1241.76183
Summary: The secondary instability of a zero-pressure-gradient boundary layer, distorted by unsteady Klebanoff streaks, is investigated. The base profiles for the analysis are computed using direct numerical simulation (DNS) of the boundary-layer response to forcing by individual free-stream modes, which are low frequency and dominated by streamwise vorticity. Therefore, the base profiles take into account the nonlinear development of the streaks and mean flow distortion, upstream of the location chosen for the stability analyses. The two most unstable modes were classified as an inner and an outer instability, with reference to the position of their respective critical layers inside the boundary layer. Their growth rates were reported for a range of frequencies and amplitudes of the base streaks. The inner mode has a connection to the Tollmien-Schlichting (T-S) wave in the limit of vanishing streak amplitude. It is stabilized by the mean flow distortion, but its growth rate is enhanced with increasing amplitude and frequency of the base streaks. The outer mode only exists in the presence of finite amplitude streaks. The analysis of the outer instability extends the results of P. Andersson et al. [J. Fluid Mech. 428, 29–60 (2001; Zbl 0983.76025)] to unsteady base streaks. It is shown that base-flow unsteadiness promotes instability and, as a result, leads to a lower critical streak amplitude. The results of linear theory are complemented by DNS of the evolution of the inner and outer instabilities in a zero-pressure-gradient boundary layer. Both instabilities lead to breakdown to turbulence and, in the case of the inner mode, transition proceeds via the formation of wave packets with similar structure and wave speeds to those reported by S. Nagarajan et al.[J. Fluid Mech. 572, 471–504 (2007; Zbl 1145.76025)].

MSC:
76E05 Parallel shear flows in hydrodynamic stability
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76F06 Transition to turbulence
Software:
ARPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Morkovin, Bull. Am. Phys. Soc. 39 pp 1882– (1994)
[2] DOI: 10.1017/S0022112010001758 · Zbl 1205.76020 · doi:10.1017/S0022112010001758
[3] Morkovin, Viscous Drag Reduction pp 1– (1969) · doi:10.1007/978-1-4899-5579-1_1
[4] DOI: 10.1063/1.858386 · doi:10.1063/1.858386
[5] DOI: 10.1017/S0022112004000941 · Zbl 1131.76326 · doi:10.1017/S0022112004000941
[6] DOI: 10.1017/S0022112000002810 · Zbl 0963.76509 · doi:10.1017/S0022112000002810
[7] DOI: 10.1017/S0022112002002331 · Zbl 1163.76359 · doi:10.1017/S0022112002002331
[8] DOI: 10.1063/1.2750684 · Zbl 1182.76490 · doi:10.1063/1.2750684
[9] DOI: 10.1017/S0022112094003095 · doi:10.1017/S0022112094003095
[10] DOI: 10.1007/s00348-005-0040-6 · doi:10.1007/s00348-005-0040-6
[11] DOI: 10.1017/S0022112006009141 · Zbl 1094.76020 · doi:10.1017/S0022112006009141
[12] DOI: 10.1017/S0022112010002600 · Zbl 1205.76019 · doi:10.1017/S0022112010002600
[13] DOI: 10.1017/S0022112001007431 · doi:10.1017/S0022112001007431
[14] DOI: 10.1063/1.3422004 · Zbl 1190.76082 · doi:10.1063/1.3422004
[15] DOI: 10.1063/1.3040302 · Zbl 1182.76470 · doi:10.1063/1.3040302
[16] DOI: 10.1017/S0022112000002421 · Zbl 0983.76025 · doi:10.1017/S0022112000002421
[17] DOI: 10.1017/S0022112008001201 · Zbl 1151.76497 · doi:10.1017/S0022112008001201
[18] DOI: 10.1017/S0022112098003504 · Zbl 0951.76032 · doi:10.1017/S0022112098003504
[19] DOI: 10.1137/1.9780898719628 · Zbl 0901.65021 · doi:10.1137/1.9780898719628
[20] DOI: 10.1017/S0022112080000122 · Zbl 0428.76049 · doi:10.1017/S0022112080000122
[21] DOI: 10.1146/annurev.fl.23.010191.002431 · doi:10.1146/annurev.fl.23.010191.002431
[22] Klebanoff, Bull. Am. Phys. Soc. 16 pp 1323– (1971)
[23] DOI: 10.1017/S0022112074000929 · Zbl 0298.76024 · doi:10.1017/S0022112074000929
[24] Kendall, Boundary Layer Stability and Transition to Turbulence pp 23– (1991)
[25] DOI: 10.1017/S0022112010003873 · Zbl 1225.76147 · doi:10.1017/S0022112010003873
[26] DOI: 10.1017/S0022112008005648 · Zbl 1171.76365 · doi:10.1017/S0022112008005648
[27] DOI: 10.1017/S0022112006001893 · Zbl 1145.76025 · doi:10.1017/S0022112006001893
[28] DOI: 10.1017/S0022112000002469 · Zbl 0983.76027 · doi:10.1017/S0022112000002469
[29] DOI: 10.1017/S0022112006001340 · Zbl 1177.76136 · doi:10.1017/S0022112006001340
[30] Hunt, Fluid Dyn. Trans. 9 pp 121– (1977)
[31] DOI: 10.1017/S0022112005003800 · Zbl 1070.76024 · doi:10.1017/S0022112005003800
[32] DOI: 10.1017/S0022112003004221 · Zbl 1137.76377 · doi:10.1017/S0022112003004221
[33] DOI: 10.1063/1.863490 · Zbl 0466.76030 · doi:10.1063/1.863490
[34] DOI: 10.1017/S0022112007008336 · Zbl 1125.76305 · doi:10.1017/S0022112007008336
[35] DOI: 10.1017/S0022112094003083 · doi:10.1017/S0022112094003083
[36] DOI: 10.1016/j.ijheatfluidflow.2007.05.004 · doi:10.1016/j.ijheatfluidflow.2007.05.004
[37] DOI: 10.1017/S0022112087002337 · doi:10.1017/S0022112087002337
[38] DOI: 10.1146/annurev.fl.20.010188.002415 · doi:10.1146/annurev.fl.20.010188.002415
[39] DOI: 10.1017/S0022112010000376 · Zbl 1193.76057 · doi:10.1017/S0022112010000376
[40] DOI: 10.1017/S0022112068001837 · Zbl 0169.28501 · doi:10.1017/S0022112068001837
[41] DOI: 10.1146/annurev.fluid.34.082701.161921 · doi:10.1146/annurev.fluid.34.082701.161921
[42] DOI: 10.1017/S0022112008003078 · Zbl 1151.76496 · doi:10.1017/S0022112008003078
[43] DOI: 10.1146/annurev.fl.26.010194.002115 · doi:10.1146/annurev.fl.26.010194.002115
[44] DOI: 10.1017/S0022112093000023 · Zbl 0765.76029 · doi:10.1017/S0022112093000023
[45] DOI: 10.1016/0021-9991(91)90139-C · Zbl 0718.76079 · doi:10.1016/0021-9991(91)90139-C
[46] DOI: 10.1017/S0022112095000401 · Zbl 0851.76018 · doi:10.1017/S0022112095000401
[47] DOI: 10.1146/annurev.fl.08.010176.001523 · doi:10.1146/annurev.fl.08.010176.001523
[48] DOI: 10.1017/S0022112002006140 · doi:10.1017/S0022112002006140
[49] DOI: 10.1146/annurev.fl.01.010169.001333 · doi:10.1146/annurev.fl.01.010169.001333
[50] DOI: 10.1016/j.euromechflu.2004.05.001 · Zbl 1060.76040 · doi:10.1016/j.euromechflu.2004.05.001
[51] DOI: 10.1017/S0022112071002842 · Zbl 0237.76027 · doi:10.1017/S0022112071002842
[52] DOI: 10.1063/1.1493791 · Zbl 1185.76090 · doi:10.1063/1.1493791
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.