×

zbMATH — the first resource for mathematics

Feedback control of three-dimensional optimal disturbances using reduced-order models. (English) Zbl 1241.76167
Summary: The attenuation of three-dimensional wavepackets of streaks and Tollmien-Schlichting (TS) waves in a transitional boundary layer using feedback control is investigated numerically. Arrays of localized sensors and actuators (about 10-20) with compact spatial support are distributed near the rigid wall equidistantly along the spanwise direction and connected to a low-dimensional (\(r = 60\)) linear quadratic Gaussian controller. The control objective is to minimize the disturbance energy in a domain spanned by a number of proper orthogonal decomposition modes. The feedback controller is based on a reduced-order model of the linearized Navier-Stokes equations including the inputs and outputs, computed using a snapshot-based balanced truncation method. To account for the different temporal and spatial behaviour of the two main instabilities of boundary-layer flows, we design two controllers. We demonstrate that the two controllers reduce the energy growth of both TS wavepackets and streak packets substantially and efficiently, using relatively few sensors and actuators. The robustness of the controller is investigated by varying the number of actuators and sensors, the Reynolds number and the pressure gradient. This work constitutes the first experimentally feasible simulation-based control design using localized sensing and acting devices in conjunction with linear control theory in a three-dimensional setting.

MSC:
76D55 Flow control and optimization for incompressible viscous fluids
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76F06 Transition to turbulence
Software:
SIMSON
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lewis, Optimal Control (1995)
[2] DOI: 10.1007/s00348-003-0671-4 · doi:10.1007/s00348-003-0671-4
[3] DOI: 10.1017/S0022112009991418 · Zbl 1183.76701 · doi:10.1017/S0022112009991418
[4] Laub, The Riccati Equation pp 163– (1991) · doi:10.1007/978-3-642-58223-3_7
[5] DOI: 10.1109/TAC.2002.800646 · Zbl 1364.93363 · doi:10.1109/TAC.2002.800646
[6] DOI: 10.1115/1.3077635 · doi:10.1115/1.3077635
[7] Kalman, Trans. ASME D J. Basic Engng 82 pp 24– (1960)
[8] DOI: 10.1017/S0022112008004394 · Zbl 1156.76374 · doi:10.1017/S0022112008004394
[9] Joshi, J. Fluid Mech. 332 pp 157– (1997)
[10] DOI: 10.2514/1.41365 · doi:10.2514/1.41365
[11] DOI: 10.1063/1.2840197 · Zbl 1182.76341 · doi:10.1063/1.2840197
[12] Anderson, Optimal Control: Linear Quadratic Methods (1990)
[13] DOI: 10.1137/100787350 · Zbl 1202.76061 · doi:10.1137/100787350
[14] DOI: 10.1016/j.euromechflu.2007.09.004 · Zbl 1147.76025 · doi:10.1016/j.euromechflu.2007.09.004
[15] DOI: 10.1017/CBO9780511622700 · doi:10.1017/CBO9780511622700
[16] DOI: 10.1017/S0022112009992655 · Zbl 1189.76163 · doi:10.1017/S0022112009992655
[17] DOI: 10.1063/1.1608939 · Zbl 1186.76231 · doi:10.1063/1.1608939
[18] DOI: 10.1002/(SICI)1099-1239(199903)9:3&lt;183::AID-RNC399&gt;3.0.CO;2-E · Zbl 0949.93018 · doi:10.1002/(SICI)1099-1239(199903)9:3<183::AID-RNC399>3.0.CO;2-E
[19] DOI: 10.1017/S0022112003003823 · Zbl 1163.76353 · doi:10.1017/S0022112003003823
[20] Zhou, Robust and Optimal Control (2002)
[21] White, 38th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper (2000)
[22] DOI: 10.1146/annurev.fluid.30.1.579 · doi:10.1146/annurev.fluid.30.1.579
[23] Tempelmann, 5th European Conf. on Computational Fluid Dynamics (2010)
[24] DOI: 10.1063/1.869759 · doi:10.1063/1.869759
[25] DOI: 10.1016/S0142-727X(03)00051-1 · doi:10.1016/S0142-727X(03)00051-1
[26] DOI: 10.1007/s00348-007-0436-6 · doi:10.1007/s00348-007-0436-6
[27] DOI: 10.1063/1.869828 · Zbl 1185.76532 · doi:10.1063/1.869828
[28] Green, Linear Robust Control (1995)
[29] Skogestad, Multivariable Feedback Control, Analysis to Design (2005) · Zbl 0883.93001
[30] DOI: 10.1080/00207178408933239 · Zbl 0543.93036 · doi:10.1080/00207178408933239
[31] Semeraro, Seventh IUTAM Symp. on Laminar–Turbulent Transition (2010)
[32] Dullerud, A Course in Robust Control Theory. A Convex Approach (1999)
[33] Schlichting, Boundary-Layer Theory (2000) · doi:10.1007/978-3-642-85829-1
[34] DOI: 10.1109/9.29425 · Zbl 0698.93031 · doi:10.1109/9.29425
[35] DOI: 10.1142/S0218127405012429 · Zbl 1140.76443 · doi:10.1142/S0218127405012429
[36] DOI: 10.1109/TAC.1978.1101812 · doi:10.1109/TAC.1978.1101812
[37] DOI: 10.1017/S0022112094003551 · doi:10.1017/S0022112094003551
[38] Curtain, An Introduction to Infinite-Dimensional Linear Systems Theory (1995) · Zbl 0839.93001 · doi:10.1007/978-1-4612-4224-6
[39] DOI: 10.1017/S0022112004001855 · Zbl 1065.76121 · doi:10.1017/S0022112004001855
[40] DOI: 10.1109/TAC.1982.1102945 · Zbl 0482.93024 · doi:10.1109/TAC.1982.1102945
[41] DOI: 10.1146/annurev.fluid.37.061903.175810 · Zbl 1117.76027 · doi:10.1146/annurev.fluid.37.061903.175810
[42] DOI: 10.1063/1.1689711 · Zbl 1186.76410 · doi:10.1063/1.1689711
[43] DOI: 10.1017/S0022112093002575 · Zbl 0800.76296 · doi:10.1017/S0022112093002575
[44] DOI: 10.1137/S1064827596310251 · Zbl 0930.35015 · doi:10.1137/S1064827596310251
[45] Chevalier, A pseudo-spectral solver for incompressible boundary layer flows. Trita-Mek 7 (2007)
[46] DOI: 10.1109/TAC.1981.1102568 · Zbl 0464.93022 · doi:10.1109/TAC.1981.1102568
[47] DOI: 10.1017/S0022112005008578 · Zbl 1134.76353 · doi:10.1017/S0022112005008578
[48] DOI: 10.2514/1.J050150 · doi:10.2514/1.J050150
[49] DOI: 10.1017/S0022112007007392 · Zbl 1141.76379 · doi:10.1017/S0022112007007392
[50] DOI: 10.1016/j.ijheatfluidflow.2008.03.009 · doi:10.1016/j.ijheatfluidflow.2008.03.009
[51] DOI: 10.1063/1.858386 · doi:10.1063/1.858386
[52] DOI: 10.1017/S0022112009993703 · Zbl 1189.76192 · doi:10.1017/S0022112009993703
[53] Bewley, J. Fluid Mech. 447 pp 179– (2001) · Zbl 1036.76027 · doi:10.1017/S0022112001005821
[54] DOI: 10.1063/1.863471 · doi:10.1063/1.863471
[55] DOI: 10.1017/S0022112098001281 · Zbl 0924.76028 · doi:10.1017/S0022112098001281
[56] DOI: 10.1016/S0376-0421(00)00016-6 · doi:10.1016/S0376-0421(00)00016-6
[57] DOI: 10.1017/S0022112007006490 · Zbl 1118.76011 · doi:10.1017/S0022112007006490
[58] DOI: 10.1109/TAC.1987.1104549 · Zbl 0624.93025 · doi:10.1109/TAC.1987.1104549
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.