×

zbMATH — the first resource for mathematics

Generation of internal solitary waves in a pycnocline by an internal wave beam: a numerical study. (English) Zbl 1241.76101
Summary: Oceanic observations from western Europe and the south-western Indian ocean have provided evidence of the generation of internal solitary waves due to an internal tidal beam impinging on the pycnocline from below - a process referred to as ‘local generation’ (as opposed to the more direct generation over topography). Here we present the first direct numerical simulations of such a generation process with a fully nonlinear non-hydrostatic model for an idealised configuration. We show that, depending on the parameters, different modes can be excited and we provide examples of internal solitary waves as first, second and third modes, trapped in the pycnocline. A criterion for the selection of a particular mode is put forward, in terms of phase speeds. In addition, another simpler geometrical criterion is presented to explain the selection of modes in a more intuitive way. Finally, results are discussed and compared with the configuration of the Bay of Biscay.

MSC:
76B25 Solitary waves for incompressible inviscid fluids
76B55 Internal waves for incompressible inviscid fluids
86A05 Hydrology, hydrography, oceanography
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1029/RG027i003p00293 · doi:10.1029/RG027i003p00293
[2] DOI: 10.1175/1520-0485(1991)021&lt;0028:APABRO&gt;2.0.CO;2 · doi:10.1175/1520-0485(1991)021<0028:APABRO>2.0.CO;2
[3] DOI: 10.1016/0198-0149(92)90045-U · doi:10.1016/0198-0149(92)90045-U
[4] DOI: 10.1016/0198-0149(90)90022-N · doi:10.1016/0198-0149(90)90022-N
[5] DOI: 10.1016/0198-0149(88)90026-X · doi:10.1016/0198-0149(88)90026-X
[6] DOI: 10.1016/0967-0637(95)00067-4 · doi:10.1016/0967-0637(95)00067-4
[7] DOI: 10.5194/npg-15-233-2008 · doi:10.5194/npg-15-233-2008
[8] DOI: 10.1146/annurev.fluid.38.050304.092129 · Zbl 1098.76018 · doi:10.1146/annurev.fluid.38.050304.092129
[9] DOI: 10.1017/S0022112009991236 · Zbl 1183.76636 · doi:10.1017/S0022112009991236
[10] DOI: 10.5194/npg-17-575-2010 · doi:10.5194/npg-17-575-2010
[11] DOI: 10.1029/96JC02776 · doi:10.1029/96JC02776
[12] DOI: 10.1063/1.2472511 · Zbl 1146.76396 · doi:10.1063/1.2472511
[13] Lighthill, Waves in Fluids (1978)
[14] DOI: 10.1016/j.dsr2.2004.09.012 · doi:10.1016/j.dsr2.2004.09.012
[15] Leblond, Waves in the Ocean (1978)
[16] DOI: 10.1357/002224001762882646 · doi:10.1357/002224001762882646
[17] DOI: 10.1017/S0022112075001516 · doi:10.1017/S0022112075001516
[18] DOI: 10.1016/j.dsr.2006.01.013 · doi:10.1016/j.dsr.2006.01.013
[19] DOI: 10.1017/S0022112007008786 · Zbl 1151.76399 · doi:10.1017/S0022112007008786
[20] DOI: 10.1357/002224099321618236 · doi:10.1357/002224099321618236
[21] DOI: 10.1063/1.2766741 · Zbl 1182.76869 · doi:10.1063/1.2766741
[22] DOI: 10.1175/1520-0485(1998)028&lt;1853:NROIWA&gt;2.0.CO;2 · doi:10.1175/1520-0485(1998)028<1853:NROIWA>2.0.CO;2
[23] DOI: 10.1017/S0022112087001228 · Zbl 0633.76024 · doi:10.1017/S0022112087001228
[24] DOI: 10.1017/S0022112072000837 · Zbl 0247.76095 · doi:10.1017/S0022112072000837
[25] DOI: 10.1029/2008JC005125 · doi:10.1029/2008JC005125
[26] DOI: 10.5589/m07-041 · doi:10.5589/m07-041
[27] DOI: 10.1016/S0967-0637(01)00082-6 · doi:10.1016/S0967-0637(01)00082-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.