×

Experiments and modelling of premixed laminar stagnation flame hydrodynamics. (English) Zbl 1241.76007

Summary: The hydrodynamics of a reacting impinging laminar jet, or stagnation flame, is studied experimentally and modelled using large activation energy asymptotic models and numerical simulations. The jet-wall geometry yields a stable, steady flame and allows for precise measurement and specification of all boundary conditions on the flow. Laser diagnostic techniques are used to measure velocity and CH radical profiles. The axial velocity profile through a premixed stagnation flame is found to be independent of the nozzle-to-wall separation distance at a fixed nozzle pressure drop, in accord with results for non-reacting impinging laminar jet flows, and thus the strain rate in these flames is only a function of the pressure drop across the nozzle. The relative agreement between the numerical simulations and experiment using a particular combustion chemistry model is found to be insensitive to both the strain rate imposed on the flame and the relative amounts of oxygen and nitrogen in the premixed gas, when the velocity boundary conditions on the simulations are applied in a manner consistent with the formulation of the streamfunction hydrodynamic model. The analytical model predicts unburned, or reference, flame speeds that are slightly lower than the detailed numerical simulations in all cases and the observed dependence of this reference flame speed on strain rate is stronger than that predicted by the model. Experiment and simulation are in excellent agreement for near-stoichiometric methane-air flames, but deviations are observed for ethylene flames with several of the combustion models used. The discrepancies between simulation and experimental profiles are quantified in terms of differences between measured and predicted reference flame speeds, or position of the CH-profile maxima, which are shown to be directly correlated. The direct comparison of the measured and simulated reference flame speeds, \(\Delta S_{u}\), can be used to infer the difference between the predicted flame speed of the combustion model employed and the true laminar flame speed of the mixture, \(\Delta S^{O}_{f}\), i.e. \(\Delta S_{u}=\Delta S^{O}_{f}\), consistent with recently proposed nonlinear extrapolation techniques.

MSC:

76-05 Experimental work for problems pertaining to fluid mechanics
76V05 Reaction effects in flows
80A25 Combustion

Software:

GRI-Mech 3.0
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1016/0017-9310(78)90230-2 · Zbl 0402.76038 · doi:10.1016/0017-9310(78)90230-2
[2] DOI: 10.1016/0010-2180(95)00189-1 · doi:10.1016/0010-2180(95)00189-1
[3] Schlichting, Boundary Layer Theory (1960) · Zbl 0096.20105
[4] DOI: 10.1016/j.proci.2004.08.105 · doi:10.1016/j.proci.2004.08.105
[5] DOI: 10.1016/j.proci.2006.07.110 · doi:10.1016/j.proci.2006.07.110
[6] DOI: 10.1007/s00348-006-0137-6 · doi:10.1007/s00348-006-0137-6
[7] DOI: 10.1007/BF00194863 · doi:10.1007/BF00194863
[8] DOI: 10.1016/0010-2180(85)90116-6 · doi:10.1016/0010-2180(85)90116-6
[9] DOI: 10.1016/j.proci.2008.06.117 · doi:10.1016/j.proci.2008.06.117
[10] DOI: 10.1017/S0022112082002481 · Zbl 0545.76133 · doi:10.1017/S0022112082002481
[11] DOI: 10.1017/S0022112003004683 · Zbl 1071.76066 · doi:10.1017/S0022112003004683
[12] DOI: 10.1080/00102208308923629 · doi:10.1080/00102208308923629
[13] DOI: 10.1016/S0010-2180(99)00070-X · doi:10.1016/S0010-2180(99)00070-X
[14] DOI: 10.1016/0094-5765(76)90001-1 · doi:10.1016/0094-5765(76)90001-1
[15] DOI: 10.1016/j.proci.2008.05.066 · doi:10.1016/j.proci.2008.05.066
[16] DOI: 10.1016/j.proci.2010.05.106 · doi:10.1016/j.proci.2010.05.106
[17] DOI: 10.1080/00102209708935693 · doi:10.1080/00102209708935693
[18] DOI: 10.1016/0010-2180(94)90204-6 · doi:10.1016/0010-2180(94)90204-6
[19] DOI: 10.1016/S0360-1285(00)00018-6 · doi:10.1016/S0360-1285(00)00018-6
[20] Law, Proc. Combust. Inst. 22 pp 1381– (1988) · doi:10.1016/S0082-0784(89)80149-3
[21] DOI: 10.1016/0010-2180(88)90025-9 · doi:10.1016/0010-2180(88)90025-9
[22] Kee, Proc. Combust. Inst. 22 pp 1479– (1988) · doi:10.1016/S0082-0784(89)80158-4
[23] DOI: 10.1002/0471461296 · doi:10.1002/0471461296
[24] DOI: 10.1016/j.combustflame.2009.06.011 · doi:10.1016/j.combustflame.2009.06.011
[25] DOI: 10.1016/0010-2180(82)90054-2 · doi:10.1016/0010-2180(82)90054-2
[26] Ishizuka, Proc. Combust. Inst. 19 pp 327– (1982) · doi:10.1016/S0082-0784(82)80204-X
[27] DOI: 10.1016/S1540-7489(02)80175-4 · doi:10.1016/S1540-7489(02)80175-4
[28] Grcar, Proc. Combust. Inst. 21 pp 1773– (1986) · doi:10.1016/S0082-0784(88)80411-9
[29] DOI: 10.1016/S0360-1285(00)00012-5 · doi:10.1016/S0360-1285(00)00012-5
[30] DOI: 10.1080/00102208108946970 · doi:10.1080/00102208108946970
[31] Frouzakis, Proc. Combust. Inst. 27 pp 571– (1998) · doi:10.1016/S0082-0784(98)80448-7
[32] DOI: 10.1016/j.proci.2008.06.054 · doi:10.1016/j.proci.2008.06.054
[33] DOI: 10.1063/1.865554 · Zbl 0623.76070 · doi:10.1063/1.865554
[34] DOI: 10.1016/j.combustflame.2010.04.001 · doi:10.1016/j.combustflame.2010.04.001
[35] DOI: 10.1016/S0010-2180(96)00152-6 · doi:10.1016/S0010-2180(96)00152-6
[36] DOI: 10.1016/0010-2180(91)90003-T · doi:10.1016/0010-2180(91)90003-T
[37] DOI: 10.1017/S0022112082001839 · Zbl 0536.76103 · doi:10.1017/S0022112082001839
[38] DOI: 10.1016/0010-2180(95)00249-9 · doi:10.1016/0010-2180(95)00249-9
[39] DOI: 10.1088/1364-7830/5/3/306 · Zbl 1006.76584 · doi:10.1088/1364-7830/5/3/306
[40] DOI: 10.1080/00102209408935428 · doi:10.1080/00102209408935428
[41] Bergthorson, Phys. Rev. 72 pp 066307– (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.